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Abstract

Let I =[O0, d), whered is finite or infinite. LetW,, (x) = x” exp(—Q (x)), wherep > — % andQ
is continuous and increasing @nwith limit oo atd. We study the orthonormal polynomials associ-
ated with the weightv2, obtaining bounds on the orthonormal polynomials, zeros, and Christoffel
functions. In addition, we obtain restricted range inequalities.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let
I =10,d), (1.1)
where O< d<oo.LetQ : I — [0, o0), and
W =exp(—Q). (1.2)
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We call W an exponential weight oh. Typical examples would be
W (x) = exp(—x*), x €0, 00),

wheres > 3 or
W) =exp(—(1-x)"%), xe€l0,1),

wherex > 0. Forp > —3, we set
W, (x) :=x"W(x), xel.

The orthonormal polynomial of degreefor W2 is denoted by, (W2, x) or just p, (x).
That for W7 is denoted by, (Wg, x) or justp, , (x). Thus

f Prp (X) pim.p () xP W2 (x) dx = Sn (1.3)
1
and

pn,p (x) = 'yn’px” + -,

wherey, , =7, (W,f) > 0.

Thereisavery substantial body of research dealing with exponential weights on a subset of
the real line, especially as regards the associated potential theory, weighted approximation,
and orthonormal polynomials. For some recent references on orthogonal polynomials for
exponential weights, and especially their asymptotics and quantitative estimates, the reader
may consul{2,3,6-8,10,21,22,24].

In our recent monograph [8], we dealt with exponential weights on a real intera)
containing 0 in its interior. A typical example would be the weight

exp(— |x|“) , X €(—00,0),

W) = { exp(— |x|ﬂ), x € [0, 00),
whereq, f > 1. In all cases, the expone@tgrows tooco at both endpoints of the interval.

In this paper, we look at the “one-sided” case whéréncreases from 0 at O teo at
d. This may be thought of as a limiting case of the two-sided case, in which the exponent
to the left of O grows tao. However, the results dB] cannot be applied through such a
limit, as the constants in the estimates there are not known to be uniform in the weight.
Moreover, there are significant differences in even the formulation of the results—just as
there are for the Laguerre and Hermite weights. Nevertheless, we can use the results from
[8] by defining an even weight corresponding to the one-sided weight.

Givenl andW as in (1.1) and (1.2), we define

I = (—JE, JZ) (1.4)
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and forx € I'*,
0" (1) =0 (+?). (1.5)
W* (x) :=exp(— Q" (x)) . (1.6)
In the special case
I =[0,00) and QO (x)=x,

this substitution gives the Hermite polynomials from Laguerre polynomials. In our case, if
D2n (W*Z, x) denotes the orthonormal polynomial of degreef@ W*2, this substitution
yields the identity

Py -1 (xz) = Dn (WE%, x2> = pan (W*Z,x) . 2.7)

Our main focus is bounds g, , (x) and associated quantities. These include the zeros of
Pn.p» Which we denote by

Xnn,p < Xn—1lnp < ' < X2np < Xlnp,

and the Christoffel functions

2
PW

w(W2x)= g AEWRS

P degP)<n—1 P2 (x)

Before stating some of our results, we need more notation. We say that—> (0, co) is
quasi-increasingf there existsC > 0 such that

fX)L<Cf(@), O<x<y<d.
Of course, any increasing function is quasi-increasing. The notation

fx) ~ gx)
means that there are positive constarftsC» such that for the relevant rangexf
C1< f(x)/g(x)<Ca.

Similar notation is used for sequences and sequences of functions.

ThroughoutC, C1, C2, ... denote positive constants independent of, t and polyno-
mials P of degree at most. We writeC = C(4), C # C(A) to indicate dependence on,
or independence of, a parameieiThe same symbol does not necessarily denote the same
constant in different occurrences.

Following is our class of weights:

Definition 1.1. Let W = ¢~¢ whereQ : I — [0, co) satisfies the following properties:
(@) +/x Q' (x) is continuous if, with limit 0 at 0 andQ(0) = 0.

(b) Q” exists in(0, d), while Q*” is positive in(O, ﬁ)
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(©)
Iirg_ 0(x) = co. (1.8)
(d) The function

xQ'(x)
o)’

is quasi-increasing if0, d), with

T(x):=

x € (0,d) (1.9)

Tx)=2A>3, xe(0,d). (1.10)

(e) There existg’; > 0 such that
10" (%)) <, 2®
Q' (x) Q(x)

Then we writeW € £ (C?). If also there exists a compact subinterdadf 7*, and
C2 > 0 such that

0" (x) > CZIQ*’(X)I
0¥ (x)] Q*(x)

then we writeW € £ (C2+).

aex e (0,d). (1.11)

a.ex € I"\J, (1.12)

Remarks. (i) Note thatthe conditions (a) and (1.10) for@eo be continuous and increasing
in [0, d). Moreover, by our hypothesis (b),

0< 0" (u) = dd—u (ZMQ/ (uz)) , uc (0, \/3) ,

souQ’ (uz) is strictly increasing in(O, JE’) Then./xQ’ (x) and xQ’ (x) are strictly
increasing in(0, d).
(ii) The simplest case of the above definition is whea [0, co) and

C>T>A>3 in(0,00).
Thus,
T ~1 in (0,00).

This is the one-sided version of the Freud caseIfoe O (1) forcesQ to be of at most
polynomial growth. MoreoveiT is then automatically quasi-increasing(iy ). Typical
examples then would be

Q(x) = Qy(x) =x% x €[0,00)
whereo > % For this choice, we see that

Tx)=0ao x € (0,00).
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Note that for the case = % which forms the boundary in the one-sided case between
determinate and indeterminate weights, there are added complications in the behavior of
the orthonormal polynomials and related quantities. For this phenomenon in the case of
even Freud weights, sej,18] for example. This explains our restriction (1.10), namely
T>A > 3, which forcesQ to grow at least as fast a$* > x%/2if | is unbounded. For
such@, of polynomial growth, most of our results fe, , follow from results of Kasuga
and Sakai [6]. They considered generalized Freud weighté exp(—20* (x)) on R.

(iii) A more general example satisfying the above conditions is

Q(x) = Ora(x) = exp.(x*) —exp.(0), x € [0, o),
wherex > 3 andk >0. Here we set

expy (x) :=x
and fork>1,

exp, (x) = expexpexp: --exp(x))---)

ktimes

is thekth iterated exponential. In particular,

exp, (x) = exp(exp,_1 (x)) .
(iv) An example on the finite intervdl = [0, 1) is
() = 0% (x) =exp(1— 1)) —exp(D), x €0, ),
whereo > 0 andk >0.
(V) The classe€ (CZ), L (C2+) are formulated in such a way thét* belongs to the

corresponding classés (C?), F (C2+), the smallest and most explicit classes of weights

from[8]. ThenW* also belongs to all the other classes used in [8], in particﬁl(altip %)
and so we can apply the relevant results from there. We use the fetteindicate that,
analogous to the Laguerre weights, we are working on (a subset of) the positive real axis.

Potential theory plays a fundamental role in analysis of exponential weights, and one of
the important quantities there is the Mhaskar—Rakhmanov-Saff numié&e, 14, 20; 21,
Theorem 1.11, p. 201], defined for- O as the positive root of the equation

1 /l a;uQ’ (a;u)
= — —————du
0

- I (1.13)

If xQ’ (x) is strictly increasing and continuous, with limits 0 adat 0 andd respectively,
a; is uniquely defined. Moreovet; is an increasing function afe (0, co), with

I|m ay = d
11— 00
The interval

A =10,a1), t>0, (1.14)
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plays a key role in analysis of weighted polynomials. For exanfip814,21] the Mhaskar—
Saff identity asserts that ® is a polynomial of degreecn, then

1Pe™ @iy = 1Pe Cllaioa) = 1P CllL (A (1.15)

anda, is, asn — oo, the “smallest” number for which this holds.
One of our main results is:

Theorem 1.2. Letp > —% and letW e L£(C?). Let p, , (x) be thenth orthonormal
polynomial for the weigth?. Then uniformly forn > 1,

an '\ -2\ (4 _ ’1/4 -
fleJ[p|pn,p(x)|W(x) <x + nz) ’(x + apn ) (a, — x) 1. (1.16)
We shall prove this in Section 8. Let
n= 0T (@) %3, >0, (1.17)
and
/ 2 _
X+ a (az x)’ Y e [07 at] ’
@, (x) = IVar—x+a, (1.18)
¢ (ar), X > a,
o, (0), x < 0.

For the Christoffel functions, we shall prove:

Theorem 1.3. Letp > —3 and letW e £ (C?).
(a) LetL > 0.Then uniformly fon >1andx € [0, a, (14 Ly, )], we have

2
In(W2, ) ~ 0,0 W20) (x + %) 7. (1.19)

(b) Moreover there exist > 0 such that uniformly for >1 andx € I,
n 2p
In(W2,x)>Co, (x)W2(x) <x + “—2) . (1.20)
n

We shall prove this in Section 6. There we treat generalizecChristoffel functions in-
volving exponentials of potentials. For the zeros, we prove:

Theorem 1.4. Letp > —3 and letW e £ (C?).
(a) There exist€ > Osuch thatfom>1and1l<;j<n —1,

Xjnp = Xj+1p <C@p (Xjn) - (1.21)

(b) For each fixedj andn, x;,,, is a non-decreasing function pf

(©

Xnn,p ™~ ann72’ (122)
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and

ay (l — Cnn) <X1pp < Ayipy - (1.23)
If in addition W € £ (C?+), then for large enough,

1My (1.24)

an

We shall prove this in Section 7. Finally, we note a restricted range inequality, which will
be proved in Section 5. In the sequel, weftdenote the polynomials of degreen.

Theorem 1.5. LetW e £ (C?). Let0 < p<ocandL, 2>0.Letf > -1 if p < oo and
p=0if p = oo.
(a) There existC1, ng > 0such that fom >ngand P € P,,

HPW) @) X1,y <CLEPW) ) XPIl Lt ann-2.a0 1m0 (1.25)
(b) Givenr > 1,there exisiCs, ng, o > 0 such that fom >ngand P € P,,

1 PW) () xP L @) < €XD(=C2n™) | (PW) (0) Pl - (1.26)

We note that all the above results are valid under weaker conditioms. @il we need is
thatW* satisfies the conditions for the corresponding resyBjnHowever, for simplicity,
we use just one class of weights in this paper. We note too that for the case @/lseod
polynomial growth o = [0, co), Theorems 1.2—1.5 mostly follow from Theorems 1.1-1.4
of Kasuga and Sakai [6, p. 15].

This paper is organised as follows. In the next section, we rélf((éz) to a class of
weights from [8]. In Section 3, we state some technical estimates, most following from
results in [8]. In Section 4, we formulate some potential theoretic estimates. In Section 5,
we state and prove restricted range inequalities. In Section 6, we state and prove estimates
for Christoffel functions. In Section 7, we state and prove estimates for zeros of orthogonal
polynomials. Finally in Section 8, we state and prove our bounds for orthogonal polynomi-
als.

Finally, we illustrate some of the results above on specific weights. In this exercise, the
relation

0 (ar) ~ 1T (an) 2, (1.27)
which holds uniformly for > 0, plays an essential role. This is proved in Lentrh

Example 1. Let/ = [0, 00), o > %

Q(x) = Qy(x) =x%, x €0, 00).
Recall that for allx,

T(x)=o.
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In this special case (1.13) gives

1/
B I'(2) 1/a
at_(ﬁl“(ow%)) T

We see that
n, = (oct)_2/3, t > 0.
(1) The estimate for the largest zerg, of p,(W2, x) may be expressed as
2/3

1—x1p/an ~n=7,

which coincides with the usual relation for the largest zeros of Laguerre weights. The
spacing between the largest zeros has the form

(X1 — x24) /nl/“ =0 (n72/3) .
(1) One may simplifye, of (1.18) a little:

1 x—i—tl/“_z

1
@ () ~ 157 —. xe[0.ql

_2
ar—Xx +1toe 3

(Il Theorem1l.3 gives

2 2 Xdy 1
),n(Wp,x)/Wp(x)w /7\/x—2/3
1—-—+n-
an

uniformly for x € [Z—z an]. From this we deduce that

I (W2, /W2 ~ st
n ( P x) P (x) n n
uniformly for x € [da,, ea, ] and for any fixed O< 6 < ¢ < 1. Moreover, one can

deduce that
) an 1_
inf /In(Wg,x)/sz(x)NﬁNna 2.

)c}an/n2

Example 2. Let/ = [0, 00), k>1 andx > 3. Let,
0(x) = Qk,u(x) = exp(x™) — exp.(0), x € [0, 00).
We also need thgth iterated logarithm: let Iqg(x) := x and forj >1,

Iogj (x) = log(log(log- - -log (x))), x > exp;_1 (0).

j times
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In this example, uniformly fox >1,

k—1
T (x) ~ x* l_[ exp; (x%).

j=1

Clearly then, givere > 0O, T (a,) grows slower tharilog O ()1t asn — oo. It also
grows faster than lo@ (a,,). Then (1.27) can be used to show that

exp_y (ay) =logn — 3 (loglogn) (1+ 0 (1)),

and in particular, a8 — oo,
ap = (logen)"* (140 (D).

Moreover
k
T (an) ~ [ [ log; n
j=1

and
—2/3

k
n, ~ | n nlogjn
j=1

() For the largest zerey, of p, (WZ, x):
-2/3

k
1—x1,/a, ~ nl_llogjn ;
j=1

and for the spacing of the zeros

. —2/3

1
(x1n — x2) / (Ing ”) “~o n l_[ |09j n
j=1
For the smallest zero,

Xnn ™~ (Iogk n)l/“ n 2.

(I) For the Christoffel functions, we have far> exp, (1),
=1 (1172 2 2 —1/o
xg?ozflo)g) I (W ,x) W= (x) ~ n® (log; n) .
Moreover, given O< § < 1, we have fon > exp, (1),
min }v;l (Wz, x) W2 (x) ~n (Iogk n)_l/a

xe[0,ap,]
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and

L 1/2

n
max At (Wz, x) W)y~ —— log; n
xe[aﬁn,oo) n (logk n)l/% Il_[ ]

j=1
Example 3. Let/ =[0,1),a > 0, and

Q(X) :(1_x)—06_l7 X € [07 1)
Here

T (x) ! € 1 1

X 1—x N X 2, .

A feature of this example, is thdt (x) may grow faster tha® (x) asx — 1—. This occurs
if « < 1. From (1.27),

T
l—a,~n \*"2

and hence

1
1
T (ap) ~n""z2,

Moreover,

2 (2a+3)
3\ 2211
Ny ~n

() For the largest zer®1, of p, (W2, x) :
_2(2:43
1— x1n/an ~n 3(2x+l>;
and for the spacing of the zeros
72(2“3)
X1y —xop = O | n 3\ZF1) ),

(II) For the Christoffel functions, we have far>1,

1 (2 208 2
max i, (W ,x)W (x) ~n

1
and there exist& > 0 such that for > 1 andx € |:n_2, 1—Kn *2 ]

n

it <W2, x> W2 (x) ~ Nt
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Example 4. LetI = [0, 1) andk>1 andx > 0. Let

o) = %P () =exp (L — 1)) —exp(1), xel0,1).
Here as1 — oo

1—ay, = (log,n) """ (140 (1)

and

k-1
T (ay) ~ (log, n)* " []log; n.
j=1

Moreover,
. 1 -2/3
+
n ~ | n(logen) [T log; n
j=1
() For the largest zerey, of p, (W2, x):
i -2/3
1—x1,/a, ~ | n (|ng n)l+l/a 1_[ log; n
j=1
and for the spacing of the zeros
1 -2/3
X1n—x2, =0 | | n (logk n)Hl/“ 1_[ log; n
j=1
For the smallest zero, we have
Xnn ™~ n2.
(I For the Christoffel functions, we have far>1,
max /L (WZ, x) W2 (x) ~ n2.
x€[0,1]
Moreover, given O< f < 1, we have fon > exp, (1),
1/2

k-1
max J* (WZ, x) W2 (x) ~ n | (logg n)* [ [ log; n

x€[ag, 1] i1

1
and there exist& > 0 such that fon >1 andx € |:n2, 1- K (log, n)“]

n

it <W2, x> W2 (x) ~ N

209
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2. Classes of weight®¥ and w*

The classC (Cz) was defined in such a way th@t* becomes part of the correspond-

ing class in[8, p. 7], namely the clas§ (CZ): In the formulation below, there are some
simplifications, due to the fact th#it* is even.

Definition 2.1. Let W* = ¢~ 2" where 0* : I* — [0, c0) satisfies the following
properties:

(@) Q* is continuous if* andQ*(0) = 0.

(b) O*" exists and is positive in*\{0}.

(c)

lim Q*(x) = oo.
x—/d—

(d) The function

x Q" (x)
T*(x) := , 2.1
(x) o) (2.1)
is quasi-increasing if0, v/d), with
T*(x)=A* > 1, xe I*\{0}. 2.2)
(e) There exist€’; > 0 such that

0" (x) [0 (x)]
<C .e. I*\{0}. 2.3
0"l S Aer e (2:3)

Then we writeW* € F (Cz). If also there exists a compact subinteryalf the open
interval I*, andCz > 0 such that

0" (x) > CZIQ*’(X)I
0¥ (x)] 0*(x)

then we writeW* € F (C2+).

a.ex € I"\J, (2.4)

Lemma 2.2.
0

WeE(C2> & W e]-'(C2>.
(1

WeL(c) e wheF(c+).
Proof. (I) We first show that

WEE(C2>$W*G}"<C2).
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Now Q* (x) = 2Q’ (x?) x is continuous in'*\ {0} and by hypothesis (a) in Definitidh1
has limit O at 0, so is continuous if. So (a) in Definition 2.1 is satisfied. We see that
(b)—(d) in Definition 2.1 follow directly from those in Definition 1.1, if we skt := 2A
and observe that

T* (x) = 2T (x2> >2A = A", x eI\ {0}. (2.5)

Finally, forx (0 «/_) (1.10) and (1.11) give
Q*”(x) 1 2 Q// (x2)

Q*’(x) )_c Q/( 2)
T (x?) 0’ (xz)
< Ax + 2Cq oG 2)

0" () [ 1
= — 41,
o [2a T
s0 (2.3) in Definition 2.1 is satisfied. Thig* e F (C2).
Conversely, suppose that* e ]-'(CZ). We shall check that (e) of Definition 1.1 holds

for W. The remaining properties follow directly. Using (2.2) and (2.3) of Definition 2.1,
and then (2.5),

X

522" (x?)| _ [x0¥(x) _1‘
Q/ (xz) Q*’(x)
0¥ (x) T*(x)
g C k
Yo A

=2<C+A )%.

Then (1.11) of Definition 1.1 follows.
(I1) This follows from (I) as (1.12) in Definition 1.1 is the same as (2.4) in Definition 2.1.
O

In the sequel, we shall denote the positive Mhaskar—Rakhmanov—Saff humber for the
weight W* by a,*,t > 0. Thusga; is defined by

/ xQ*’(x) 2 /1a;“uQ*/(a;“u) .
—af 0

* _ i 1_u2

In terms ofQ, we see that this becomes (after substituting /v),
t 1/1 a;"ZUQ/(at*zv)d
—_ = = e —— v
0o ~Jv(l-v)

2 =
Recall too from remark (i) after Definitioh.1, thatx Q' (x) is a strictly increasing function
of x € (0, d), so these equations and (1.13) uniquely definrenda;. Then the above give

ar2 = a,*z. (2.6)
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We shall also use the quantity
n, = (T (a;) "3, 2.7)
and its analogue fo@*
—2/3
e = (T ()} (2.8)
We see from (2.5) that

n, = (4T (a,)) 23 = 4723, (2.9)

3. Technical estimates

In this section, we record a number of technical estimate®fanda,. Throughout we
assume thal e £ (C?).

Lemma 3.1. (a) Uniformly fort > 0, we have

0'(ay) ~ aitﬂ(a,), (3.1)
Ofar) ~ ——— (3.2)
(b) Uniformly fort >r > 0,
1/A
1< <c (5> . (3.3)
a, r

In particular for fixedL > 1 and uniformly forr > O,
ary ~ dg. (34)

(c) Fix L > 0. Then uniformly for > 0,

0 ap) ~ 0V(ay), j=0,1. (3.5)
Moreover,
T(aLl) ~ T(a;) and nLt ~ nt' (36)

(d) For somes > 0, and for large enoughn,
T(a,) <Ct?>¢ (3.7)
and

n,T(a)<Ct™® = o(1). (3.8)
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Proof. (a) Recall that* is even, and that, = (az)z. Lemma 3.4 ir{8, p. 69] gives
t
Q" (az,) ~ gV (a3,)-
t

(Note thatin the notation 8], ; = a; becaus@* is even.) Then the relationship between
Q andQ* andT andT* gives (3.1). Relation (3.2) now follows from the identity

0(x)=xQ (x)/T (x).
(b) From Lemma 3.5(c) ifB, p. 72], we have a85, = a3, in the even case,
* 1/A*
e )
a2r r

fort > r > 0. AsA™ = 2A, the result follows.
(c) This follows similarly from Lemma 3.5(b) ifB8, p. 72] and the relations between

Q0,0 T,T"
(d) These follow similarly from Lemma 3.7 in [8, p. 76] and from (2.9).]

Some further estimates involving:

Lemma 3.2. (a) Uniformly fort > 0O,

1
T (a;)

~

N

b

1
2

t
-
S

%2‘ (3.9)

(b) Given fixedL > 1, we have uniformly for > 0,

1
T(at).

are -

az

(3.10)

Proof. These follow from Lemma 3.11 {18, p. 81] and the identities relatiry 7*, a;, a;".

d
Lemma 3.3. (a) Uniformly fort > 0 and forx € [0, a;),
C
0/ (xS . (3.11)
ar — X

(b) Fix L > 0.Then uniformly for > O andx € [La;t~2, 4],
50 (1— ﬁ) <c [VT@y<cs, (3.12)
az

Proof. (a) From Lemma 3.8(a) i[8, p. 77], for someC # C (¢, y),

C
0" (y) < ——t

a;r (a;t -y )
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fory € [0, a3,) = [0, /a;). Settingy = /x gives
Ct

Ja (Ja — i)

0 () Vx <

c%:¢a+¢a

«/a_t(at —Xx)
Ct
< .
AJadr — X
(b) By Lemma 3.8(b) inf8, p. 77], fory € [0, a3,),

a;t */ y * *
20" () (1— a_2,> <C/\/T (a3,) -
Settingy = /x gives

‘/T[Tt«/)—cQ’ (x) (1— \/QZ) <c/\/T(at> .
t

Multiplying by —;j}ic (1 + /%) gives
ag ’ X C ag C
% 1-2) <= < ,
t2Q (x)< a,) t\ xT (a;) ~ T (a;)

providedx > La,t~2, some fixedL > 0. O

4. Potential theory

Let us assume that the functiQfix Q' (x) is increasing in/, with limit 0 at 0 and limit
oo atd. Because of the identity

0= i (0 ().

this is essentially equivalent 19* being convex ol *. We recall[8, p. 37; 21, p. 27], that,
givens > 0, there is a unique positive measureof total mass, and a unique constaa,
such that

) =c, x€8(u),
w%m+Q@%>é’xe“ﬂM% (4.1)
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whereS (M,) denotes the support of the measuyeand

1

[x — 5]

me=/mg dp (s)
is the corresponding logarithmic potential. This meagyris the equilibrium measure for
the external fieldD. In this section, we relatg, to the corresponding measuytg for Q0*,
and hence establish some basic results abput

Giventr > 0, we lety; denote the equilibrium measure fOr* so that

=cf, xeS(u).

>cf, x e IN\S(1). (4.2)

WH@+QWm{
We lets; ands; denote the densities fpr andy;, respectively, whenever they exist. Under
mild conditions onQ or Q*, which are satisfied for the clags(C?), there is a simple

relationship between the suppofigu;), S (1), the densities}, o,, and the associated
potentials:

Theorem 4.1. Let./x Q' (x) be increasing inf, with limit 0 at 0 and limitoco atd. Assume
moreoverthat

0=0@0) <Qx), xe(0d). (4.3)

Letr > 0.
(a) u, is absolutely continuous with respect to Lebesgue measure and its derisigjven
by

o) = 5o (V). e (0a5)). @)

whereg?, is the density of the equilibrium measurg for Q™.
(b) Moreover,

VH (zz) =V (z), zeC, (4.5)
12
ar = (azt) B (46)
t 4
cr=ch = / log — ds. 4.7
0 dg

Proof. Letvdenote the measure <€ﬂ, (az)z) with density given by the right-hand side of
(4.4). We shall show thathas mass and satisfies (4.1) with some constantUniqueness
of the equilibrium measure then gives the result. First recall @iiats even, so that its
equilibrium density is also even. Moreover the hypotheses abov@ amply that O*
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satisfies the hypotheses of Theorem 2.{Bimpp. 40-41]. Now

az? a1, a
/; dv:/c; ﬁGZI (Vx) dx = /0 0% (s) ds

1 (9% N
:—/ 05 (8) ds =1t.

2 —az,
Next,
" az, 1 az, 1
V#a (7) = / log ——a%, (s) ds = / log ——a%, (s) ds
—a3, |z —s| —a3, |z + 5|

by evenness of’,. Therefore,
s 1 (% 1
i _ - *
VHa (z) = 5 / ) log —‘Zz — s2| a5, (s) ds

dy

/ Flog ot ()
= 0g+—~——0 —
0 g|22_y‘ 2t y Zﬁ

=V’ (zz) .
Next, letx € [0, (a}‘,)z] and writex = y?, wherey € [0, a3, ]. Then
Vi + 0w =V"(y?)+0(»?)
= VI (y) + 0" (7)
=5,
by the equilibrium relation (4.2) fo@*. Similarly
VY4 Q>3 in ((az)z , d) .
Uniqueness of the equilibrium measure shows that
V=4

and that (4.1) holds. We proved (4.6) at the end of Section 2, see (2.6). Finally, from
unigueness of; followed by (2.34) in [8, p. 46],

*
Ct =Cop

2t 2
= / log — dt
0 ar
2t 2
=[ log dt
0 4t/2

t
4
=/ log — ds. t
0 ds
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Next, we state a formula for, and an estimate of, the demsity):

Theorem 4.2. LetW e £ (C?).
(a) For'x € [Oa at]l

B i ar—x [Y“uQ ) —xQ'(x) du
ww= T e “9)
(b) Uniformly fors > 0,
t/a; —x
U[(.x) m, X € (O, a,) . (49)

Proof. (a) From (5.23) ir8, p. 116],

2 *
azx; = Y% 4 0¥(s)— Q¥(y)  ds
2

—az, STy a%‘tz — 52

U;t (y) =

Using (4.4),0% (s) = 25 Q’(s%) and some elementary manipulations, we obtain (4.8).
(b) Recall from Lemma 2.2 that

WeL(c?) e w er(c?).
Then we may apply Theorem 5.3[®, p. 111]: uniformly inz andy,

*2 2
1/ ay,

k k)
0 V)~ —7—— y€l0ay).
aj,t o y2

Then (4.4) gives the result..]

Recall that we define@, at (1.18). Theorem 4.2(b) shows thgtis asymptotically, up
to a constant multiple, the reciprocal @f. More precisely, if3, ¢ > 0 are fixed then for
t >0,

@, (x) ~ at_l x), xe [ﬁa,t‘z, a (1 — 3’1;)] . (4.10)
The following lemma involvingp, will be useful:

Lemma 4.3. LetW € £ (C?). GivenA, B € Rwith A < B, there existM > 0,1 > 0
such that

oy (x + lat_l (x)) ~ag (x), x€ [Matt_z, a; (1 — Mn,)] , (4.12)
and

@ (x+ 20, ) ~ o, (x), x€l, (4.12)
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uniformly forZ € [A, B], t > to, and forx in the above intervals. ConversejiyenM > 0,
there existo, ¢ > 0 such thaf(4.11)and (4.12)hold provided 1| <& and: > 1.

Proof. (I) We prove the second statement (4.12). Then (4.11) follows from (4.10) and
(4.12). In view of definition (1.18) ofy,, we need to show that for the given, B and
J € [A, B], there exist9/ > 0 such that fox € [Ma,t72,a, (1 — Mn,)],

x a2~ (x + Ap, () + ait ™2, (4.13)
apy — x ~ay — (x + Ao, (x)) , (4.14)
ar — x +a, ~a; — (x + Lo, (X)) + am,. (4.15)

We do the first and third of these; the second is easier than the third, becaistarger
thana; + a,n, for larger. These will imply (4.12) for € (Mast=2, a, (1 — Mnp)]. In the
remainder of0, a,], (and hencd) (4.12) follows since the factors in the left-hand side of
(4.13)—(4.15) do not change much. Let

D = max{|A|, |B|}.

Proof of (4.13). If first x € [Ma,;t=2, a; 2], then from (1.18),
Al @, (x) < D (ap — x)
x + a2 N x4+ ait—2Jay —x F arn,

g (azr — a;) + (a; — x)

St \/L/at - X
C 1 —

<= [ Ao — 4 —l—«/—a,—x]. (4.16)
1 /Mai=2 Lar — a2

We continue this using (3.10), (3.4) and (3.6) as

C ay C
< |/
«/_a,M[ T © “’] NI

Next, if x € [a;/2, a; (1 — Mn,)], (4.16) gives
Al ) _ D (az —ai)

x—i—a,t_z S /ar/2./ArN;

C
< S __oy-0(),
tT (ar) Un

by (3.10) again, and by (2.7). Together the above estimates show thatld&rge enough
andM is large enough, we have

A

¢ (x) <1

x+ar2 "2

for the specified range aof, ¢, 2. So we have4.13).
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Proof of (4.15). Now forx e [Ma;t=2, a, (1 — Mn,)],
ar — (x + 20, (X)) + asm;

ar — x + a1,

M| ¢, (x)
ar — x +an,
< DVx +a;t=2(ap — x)
X t(at x4 (1117[)3/2

Jarazx —ar +ar —x
t (@ —x)3?

1-—

<C

\/a_t < v 1 >
<SC— + ,
I \T (a) [Matnt]s/z VMan,

by (3.10) and as <a, (1 — M1n,). We continue this, using the definition gf, as

_ 1 1 (T (a)\*® _c
<€ R A Stz

by (3.7). SinceC is independent oM, we obtain, ifM is large enough,

a; — (x + g, (X)) + an,
ar —x +an,

1-—

1
<=
2

for the specified range of, 7, 1. So we have4.15).
The converse part of the lemma follows similarlyJ]

Lemma 4.4. Let M > 0. There existgy such that uniformly for > andx € I,
Orpm (X) ~ @, (x). (4.17)

Proof. This follows easily from (3.9) and the definition of. O

5. Restricted range inequalities

Forr >0, we denote byP, the set of all functions of the form

P)=c exp(/ log|z — fldv(i)) , (6.1

wherev>0, v (C) <t, ¢>0, and the support of is compact. These are the exponentials
of potentials of mas<z. In particular ifz >n, thenP € P, = |P| € P,. Note too that
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for P € P,, we have P(zz) e P,,. Recall also the notation
A; =10, a;].
In this section, we preseilt, analogues of the Mhaskar—Saff inequality for the clAss

Theorem 5.1. Let W := ¢~ ¢ whereQ : I — [0, co) is such thatQ* (x) = Q (x?) is
convex inl*. Assume moreover th@(d—) = coand Q(x) > 0= Q(0), x € I\{0}. Let
O<p<waMﬁ>—%¢mPePFm%HmTMn
P
HPW) @) xPllz,nay < 1 PW) @) 2P ). (5.2)
and

1PW) ) xPliL, 0y < 2271 (PW) @) Pl - (5.3)

In particular this holds for not-identically vanishing polynomidiof degree<: — f — ==.
For p = o0, (5.2)and(5.3) remain valid with< replaced by<, providedf > 0.

Under additional assumptions, we can improve the above result, and “go back" into the
interval A;, giving a Schur-type inequality. Recall the numbers

n,={tT @)}y 23 >0,
which are small for large. Theorem 1.5 is a special case of:

Theorem 5.2. LetW € £ (C?). Let0 < p<ooandL, 2>0.Letf > —% if p < co and
B=0if p = oo.
(a) There existCy, 1o such that for >rgand P € P,

HPW) ) Pl <CLl (PW) ) %Pl (ayi-2.a0 i1 (5.4)
(b) Fort, k > 0, define

~ minfk, T(a;)™ ")
=

H(ic, 1) : (5.5)

There existCy, C3 independent of, k, P with the following propertiesfor + > 0 and
P e Py,

| (PW) (x)xﬁ”L,,(a,(lJrk),d)
<C2exp(—C3H (15, 33| (PW) () x| a)- (5.6)
Furthermore givenr > 1, we have for somg, « > 0 andt >,

1 PW) () P10y < €XP(=C1*) [ (PW) ) xP I a- (5.7)
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We note that the conditions oW may be relaxed; all we need is thét* satisfy the
hypotheses of Theorem 4.2 [B, p. 96]. We begin with a Lemma which is similar to
Lemma 4.4 in [8, p. 99ff.]. Recall that the Green'’s function®y[a, b] with pole atoo is

2 a+b 2
- - - .
b_g(z )—i—b_a\/(z a)(z—D>b)

2
Itis harmonic inC\ [a, b], equal to 0 orja, b], and behaves like log| + O (1) asz — oo.

8la,p] (z) = log

Lemma 5.3. LetA = [a,b] > 0and0 < p<ococ. Letp > —% if p < ooandp>0if
p = oo.LetQ>0, ¢ € C, andv be a non-negative Borel measure with compact support
and total mass< Q. Let

P(z):=c exp(/ log|z — y|dv(y)> .

Leta € RandU be a function harmonic iC\ A with
U (z) =alog|z| +0 (1), z = oc. (5.8)

Assume moreovethat onA, U has boundary value§. from the upper and lower half
plane that satisfy

U, =U=U_,
whereeV € L, (A). Letga denote the Grees'function forC\A. Then

U (x)—(Q+0a+ 2 +max0,
1P () VT EFEHEMBOLDD 12

<C H <PeU) (x) |x]?

: 5.9
L) (5.9)

HereC = C (p) only. If p >0, we can takeC = 1.

Proof. We assume < oo. (The casep = oo follows by letting p — o0.) The proof is
similar to Lemma 4.4 if}8, p. 99ff.]. We note that it suffices to prove this witthaving
total masqQ. For, gp >0, so the left-hand side of (5.9) decreases as we inc@asaus
we assume has total mas®. We may also clearly assume= 1.
Let ga(z, x) denote the Green'’s function for the exterior of an inte?vabith pole atx.

In the special case = oo, we have already used the notatig(x) = ga(x, 00). In the
casex € A, we just set g(z, x) = 0. Now assume ¢ A. The Green’s functioga (z, x)
has the following properties:

() ga(z,x) +log|z — x| is harmonic (as a function af) in C\A;

(i) ga(z,x) =0,z € Aandga(z,x)>0o0nC.

Define the function

D) = / {log |z — x| + ga(z. 1)} dv(x)

+U(2) = (Q+ ) ga(z) + p (loglz| + ga (2, 0) — ga (2))
=:01(2) + U(z2) = (Q+ ) ga(z) + p (log|z| + ga (2, 0) — ga (2)) .
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Now (as in[8, pp. 99—100])P; is harmonic inC\A and
@1 (z) = Q log |z +/8A(oo, x)dv(x) +o(), z— o0

Next,U — (Q + o) ga is harmonic inC \A, and behaves like
—Q log|z] + Constant+ 0 (1), z — oo.

Finally, p (log |z| + ga (z, 0) — ga (z)) is harmonic inC\A and has a finite limit ato. It
follows that® is harmonic inC\ A, for it has a finite limit abo. Hence it has a single-valued
harmonic conjugat®(z) there. Then the function

f(2) = exp®(z) + iD(2))

is analytic and single-valued 1B\A and has no zeros there, so we may define a single-
valued branch offP/2(z) in C\A. Let gA(z) denote the harmonic conjugate g{(z) in
C\A so that

A(z) = exp(ga(z) +iga(2)

is analytic there except for a simple polecat
Now let us look at the boundary values ¢f f. In (a, b), we have

| fe ()] = exp(@= (x)) = |P] (x) "™ [x]P. (5.10)
Moreover inR\A,

|f )] = |P](x) eV [x]f "™, (5.11)
where

h(x) = /gA (e, y)dv(y) — (Q+ o) ga (x) + plga (x,0) — ga ()} . (5.12)
Now we consider two subcases.

Casel: p>0

Sincep >0 andgp >0, we see that

h(x) > —(Q+a+p)gax). (5.13)

Next, we apply Lemma 4.3 if8, p. 98] (with p = 2) to the functionf?/2/A, which is
analytic inC\A, obtaining

1 2 2
1FP72/ Al Lma) < 2 {”ff/ JA4 Ly + 172 /A—||L2<A>} ' (>-14)

Then (5.10)—(5.13) and the fact tHat, | = 1 in A while |[A| = exp(ga) in the rest of the
real line give (5.9) withC = 1.

Casell: -3 <p <0
We use®d above, but withp = 0, so that inA,

| f ()] = exp(@x (x)) = |P| (x) eV ™. (5.15)
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Moreover inR\A, (5.11) holds withp = 0 and with
h(x) = /gA (z, ) dv (x) — (Q+ ) ga (x) . (5.16)

As above, we may choose a single-valued branc}i®sf/A in C\A. Since this function
vanishes ato, Cauchy’s integral formula gives

1 /b (FPI21A) L () = (fPI2/A)_ (%) "

(r772/4) @) = 5=

t—z

z ¢ A. We may rewrite this as

(r72/4) ) = 5 (H [(f”/z/A)J ()~ H [(f"/z/A)_] (z)) ,

where H denotes the Hilbert transform, and we use the convention(_l;h%(tz/A)jE isO
outsideA. Then we may apply the weighted inequality for the Hilbert transfi@p. 255],
[15, p. 440],

IH [F] (o) 1x7 I, SCIE (0 1x 7 [l Lo(m).

valid if y € (—3, 3) and provided the right-hand side is finite. Choosifig= (f7/2/A)__
andy = £2 e (-3, 0) gives

/ " [r72/a]" oy x177 a

<[ f ),

<2C/ ‘Peu)p (x) |x|PP dx,
A

Sl + /A '(f”/z/A)_ 2

(x) |x|PP dX}

by (5.15). Finally (5.11), (5.16) and the fact that in this case
h(x) > —(Q+a)ga(x), x¢&A,

give the result. [

Proof of Theorem 5.1. We do this in 2 steps.
Stepl. Apply Lemma 5.3 to the weightW*: We apply Lemma 5.3 witlp = 0O there,
with A = A3, = [—a3,, a3,], and with

U (z) = V¥ (z) + 2 log z| .
Then

U(z) = (2f —2t)loglz| + 0 (1), z— oo,
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so (6.8) holds withx = 28 — 2¢. Also, by (4.2),
U@x)=—0"(x)+c5 +2floglx|, xeA;;
U@x)>—-0"(x)+c5 +2floglx|, xel"\A5.

Then (5.9) implies (recall thaf = 1 as we use Lemma 5.3 wigh= 0),

I (RW?) (o) P8 o~ (34207245 oy

< I (RW*) () Ix PP 11, o

Iz, A3

5)°

providedR € Pgq. In particular, aga; > 0 outsideA3,, we obtain

HRW) ) PPl nagy < I RWF) ) Bl 1l as,)-
provided
2
Q<2 —2p— =.
p

Step2. Transfer estimates toW: Let P € Pz—ﬁ—zi\ {0}, and
P

R) =P (52) 1P e Py gy 2.

SinceRW* is even, (5.17) gives

vd az,
2/ (RW*)p (y) y2pﬁdy < 2[ (RW*)p (y) yZPde.
a 0

*
2t

(5.17)

The substitutionr = y? and the fact thats, = ,/a, gives (5.2). Then (5.3) also follows.

We begin the proof of Theorem 5.2 with

O

Lemma 5.4. LetW e £(C?).Let0 < p<ocandi>0.Letf > —=if p < coandf>0

if p = oo. There exisC1, to such that for > and P € Py,
HPW) @) P11,y <CLIl (PW) () XPllL 0.4, (12, )1

Proof. Let
1
=1 —,
T=t+f+ 2
and

R =P (»7) 377 e P,

so we can apply Theorem 4.2(a)[B) p. 96] to deduce that for large enough

* k
WRWZlL, o) S CURW L, (—az, (1) a3, (1=m3.))

(5.18)
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HereC is independent oR, 7, 7. On making the substitutions= y? in the integrals in the
norms, and using;, = /a;, we obtain

1 PW) @l SCHLPWY @, 1o, s 7]

Here in view of (2.9),
(1- /111*2‘1)2 =1-2"Y3n. +o(n,).

Moreover, by (3.9),

ja=140(——) =1+ ()
ar/ay = T (@) = o\n;)
while by (3.6).y, ~ n,. Then (5.18) follows for large enoughif we changel a little. [J

Lemma 5.5. Let W € £ (C?). Let0 < p<ooandL, A>0.Letf > —% if p < oo and
p=0if p = co. There existC1, tp > 0 such that for > and P € P,

I CPWY ) xP L 10 1021 < CLEPW) @) 3Pl 2.0, (1)1 (5.19)
Proof. Let us write for large enough

a; (1 — }Lnl) =a; and J = [Latt_z, af] .
In view of (3.9), we see that

1

whence

t—1~ntT (@) = (T @) =0(@). (5.20)
(Recall (3.7).) Let denote the linear map of ontoA; = [0, a,] so that

£(z) = (z - La,fz) %
Let
v(z):=VH*((z)), zeC.
Then the equilibrium condition (4.1) fdr#- yields
v(x)+ QU X)) =c, x€J. (5.22)
We claim that

0<Q () — Q) <C, xel. (5.22)
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Indeed the left inequality follows as 8 increasing, and as(&) < x.We proceed to prove
the right-hand one. For € J, we have for somé betweernt and{ (x),

Q@)= QU)=0" (&) (x — L)

,a (11— /117,) —x
1— g, — L2

Herex > &> ¢ (x), so we can continue this as

0'(&) (ar — &) Lt72
1—Jn, — Lt=2

=Q'(OLt

Q(x)—Q0UKx) < <C,

by (3.12). Here we needlarge enough, aé(x) € J, andC is independent af, . So we
have (5.22). Then we may recast (5.21) as

lv(x)+ Q((x) —c| <C, x€J. (5.23)
Next, v is harmonic outsiddg, and
v (z) = —tlog|z| + Constant- o0 (1), z — oo.

We apply Lemm&.3 toU = v — ConstantQ = ¢, « = —7, A = J. We obtain
2
| P(x) exp{v (xX) — ¢ — (t -1+ > + max{0, ﬁ}) gJ (x)} xﬁ||Lp[0,Lat,_2]
SCI(Pexp(v —¢cq)) (x) XBHLP(J) <Cil (PW) (X)xﬁ”Lp(J),
by (5.23). Then we obtain (5.19) provided

v(x) —cp — (t—r+§+max{0,ﬁ})g](x)> —Q—C on [O,Latfz].

SinceQ is bounded o0, La;t~2], we can establish the right-hand side with@utNow
for any[a, b], g[«,s) iS pOsitive and decreasing @A-oo, a]. Moreover,v is increasing on
(—o0, Las;t—2]. Therefore it suffices to show that

v(0) —c; > —C; (5.24)
and
<t — T4+ % + max{O, ﬁ}) gy (0) <C. (5.25)
To prove 6.24), we observe that @ (0) = 0, (4.1) gives
v (0) — cc = Vi (£(0) — V¥ (0)
dar s
Since fors > |£ (0)],

e (0)|

'09‘ —um‘
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and sincei; ~ az; ~ a;, we can use the estimate fgf = o in (4.9) to obtain

1€(0)| s T la. KO 7t
log|——— | ——ds — A
O-czc| ogs+le<0>|‘¢ms hion = Z
v =2 e O T ds
%‘lf S JJarJar— s
d
.| VIO fglog|——| =
> o y+1 >_C
1332 Jax

sincelt (0)| ~ a;t~2; a; ~ az; ~ a,; andt ~ t. So we have (5.24). Also

ar; + La;r—2 2
-t LR 2\/La,t—2af

ar — La;t=2  a; — Last—
=log ‘—1+ 0] (fl)‘ =0 (z*l> :

so from (5.20),

gs (0) =log

2
<, — o max{o, ﬁ}) g7 (0 <C (T @)Pirt=0(1),
recall (3.7). O
Proof of Theorem 5.2(a). This follows directly from Lemmas 5.4 and 5.501

Proof of Theorem 5.2(b) for 0. Let P € P,. We derive this from Theorem 4.2(b) in
[8, p. 96], applied to¥* and P*, defined by

Pr ) =P (32) Iy e Py

SinceP*, W* are even, Theorem 4.2(b) there gives,fgr> 0,

IP*WAI, (o
Ly (a2t+2/§+1/p(l+K1)’ﬁ)

2
< C2exp(~C3H* (k1 ¥ IP* W¥ Il ag 00

where

. -1
H* (c1, 1) = min {Kl» T (“Z+2ﬁ+1/p> } /W§t+2ﬁ+1/p
~ min {Kl, T (at)*l} /s

in view of (2.6), (2.9) and (3.6). On making the substitutioa: y2 in the norms and using
(5.4), we obtain

| (PW) () 5" 12 (@ sps1som 4102.)
<Czexp(—C4H (k1. ¥ (PW) ) x|, (.-
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Now, givenx > 0, let us determing1 by
ar (14 K) = a;4pr1/02p)(1+ K1)2.
Then by (3.9),

1+ Kl)z _ az _ 0 (
l1+x Ar1B+1/2p)

1
tT(m)) = o).

S0
2k1—k=o0(n,),

and hence if1 >n,, we havex; ~ k and
H (k1,t) ~ H(k,1).

Then (5.6) follows. If insteadt; < #,, then bothH (i1, t) and H (k, r) are bounded, and
Theorem 5.2(a) gives the result.
We turn to the proof of (5.7). Let > 1, and write

ap =a; (1+x),
so that
_n g 1
az T (ar)
and hence

1
H (k1) ~ >Cr*,
T (ar)n,

somee > 0, by (3.8). Then (5.7) follows from (5.6).]

Proof of Theorem 5.2(b) for < 0. This follows from the decreasing property.of in
0, 4):

| (PW) (x)xB”Ll,(a,(l+K),d) <Cazﬁ||PWIIL,,(a,(1+K),d)
<Cal exp(—C3H (. 3D | PWII L, )
<Cexp(—C3H (1, 3| (PW) (1) Pl (a,).

In the second last line, we have used the ¢gase0 of Theorem 5.2(b). J

6. Christoffel functions

Christoffel functions are crucially important in analysis of orthogonal polynomials and
weighted approximation theory [17]. In this section we shall estimate generalized and
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classicalL , Christoffel functions for O< p < oo. As in the previous section, we denote the
exponentials of potentials with massr by P;, so

P, = {cexp</ log|z — §|dv(é)> :

c=20,v=0,v(C) <1, S(v) is compac}. (6.2)

Our L, Christoffel functions are defined as follows: fo0p < oo,

A p(W,2) = Pir;ﬂf} (I1PWlL,ay/P()", zeC. (6.2)

The polynomial analogues &; , are forn>1,
dnp(W, 2) i= Jnt (IPWllz,i)/IP@I)". zeC. (6.3)

Itis clear that
An,p(W7 Z)g;bn,p(W, 2). (6.4)

The/, ,(W, ) are weighted analogues of thg Christoffel functions introduced by Nevai
[16]. However, the classical Christoffel function is

2 I 2 2
In (WP = inf </[(PW) )/P ) . (6.5)
We see that
In(W2, x) = Jy_1,2(W, x). (6.6)

In describing our result, we shall need the auxiliary funcggnntroduced in (1.18).

Theorem 6.1. Let0 < p < 00; p > —<; L > Oand letW € £ (C?).
(a) Then3 7y > 0 such that uniformly for > 79 andx € J; = [0, a,(1+ Ly,)], we have

ag\Pr
Avp(Wpe ) ~ 9, (OW @) (x+55) 6.7)
(b) Moreover there exisiC, o > 0 such that uniformly for ># andx € I,

as\pPp
Arp(Wp, )= Co, (WP (o) (x + t—;) . (6.8)
For the polynomial analogues, , of A, ,, we prove:

Theorem 6.2. Let0 < p < c0; p > —%; L > Oand letw e £(C?).
(a) Then uniformly fom >1andx € J, = [0, a,(1+ Ln,)], we have

dn

Ty (W x) ~ @, (OWP (x) (x + ﬁ)pp . (6.9)
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(b) Moreover,there exisiC > 0 such that uniformly for >1andx € I,
1\ PP
Jnp (W, )= Cop, (x)WP (x) (x n %) . (6.10)

Note that Theorert.3 follows directly from Theorem 6.2, (6.6) and Lemma 4.4. We begin
with a lemma:

Lemma 6.3. Letp € RandL € (0, 1). For n>1, there exist polynomial®,, of degree
<n such that,

n\P
Ry (x) ~ ()C + %) , X € [07 a2n] , (611)

|R;l (x)| <cxPl xe [Lann_z, azn]. (6.12)
Proof. Suppose first thdp| < % Consider the Jacobi weight

wx) = (L—x)"" (1 - x2>71/2, xe(=1,1).
It is known[19, p. 36] that its Christoffel functions satisfy
n_l/l,:l (w, x) ~ (1 —x+ n_z)p ,
uniformly forn >1 andx € (—1, 1). Moreover, for any fixed > 0, in[0, 1 — en~2],
|k, w,x)] <C@L-x)""t,
Letk be a positive integer ar[q—j] denote the largest integet 7. We set
R, (x) = nili[_%l] <w, 1- axz> agn.

It is straightforward to check that (6.11) and (6.12) follow. The degregR,ofs at most
2n/k<n, if k >2. For generap, we choose a positive integérsuch thatp/¢| < % and
form the polynomialr,, for p/¢, and then raise it to the powér If k > 2¢, the resulting
polynomial will have degree at most [

The Proof of the lower bounds for the Christoffel functions in Theorem 6.1(b). Let
us sett = —%. We do this in three steps:
Stepl: The case = 1

Recall that we define
W* (x) = exp(— 0 (x)) = exp(—Q <x2)> . xelf= (—JE, \/Z)
and that thefW* e F (C?). From[8, Theorem 1.13, p. 20], we have fofx € [0, v/d),

o [SIPWHP ydu . .
Plenpz, |PW*|P (ﬁ) = Azx,p (W ) \/;) /W (ﬁ)
> Coy (\/)_C) )
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where in[—a3,, a3, ],
’” _‘142‘
t\/(|u + a§t| + a2t772t) (|” - a;t| + aﬁt"’ﬁt)

andg3, is defined to be constant {r-oo, —a3,] and[a3,, 0o). We see that iffi0, a;],

9 (VX) ~ — e ~ g, () /\/x+azf 2 (6.13)

t at—x+aﬂ1t

@ W) =

In (ar, d), we obtain insteag, (v/x) ~ ¢, (ar) //a;. We make the substitution= /v,
and note that if?y (v) € P;, thenP (1) = Py (vz) e P,,. We deduce that

1
Ji 1PoW P (v) —=dv

inf ' >Co, (x) /\/x a2

PocP |PoW 1P (x)

and hence
P
Arp (We. ) / (W (x+ar?) | >co, 0,
provided./x € [0, v/d), which is equivalent ta: € [0, d).

Step2. The casqa > 1. Assume thatt € [0,d). Note that if P (v) € P, then
P (v+at?)" " e Py Then

Asp (W, x) /[W (x) (x + a;rz)ﬂ]p

fm_ (IPW¢| (v) v"~7)" dv

2325; _2\P—T PN
' <|PW|(x) (x+a;t=2)"" (x + a;172?) )

[ 2(|PW1|(v) (v +ait=2)"” ’) dv
>C inf

Peb: <|PW| @) (x +a=2)"" (x + a,z—z)f)p

- Ji |PW:| ()P dv
PePripr (IPW| (x) (x +at=2))""

=>C

by our restricted range inequality Theorér(a). Using the result from Step 1, we continue
this as

P
= CAriprp (We ) /[W x) (x 4 a,t—Z) ]
>C(Pt+p—1: (x) ~ @, (x),

by Lemma 4.4.
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Step3. The case < 1: We consider two ranges of

RangeA: x € [0, a;/4]
Letn = [¢] + 1. We use the polynomialg, from Lemma6.3 that satisfy

_2\P T
Ro)~ (v+ar?)" ", vel0azl
Then as above

Arp (Wp, x) /[W (x) (x + a;t‘Z)ﬂ]p

[ (IPWT| @ (v+ a,t‘z)p_f>pdv

ait—2

>C inf 5
Pep <|PW| (x) (x + att_z)p_T (x + a,t‘z)r)
fat:tzﬁZ |PRn WT| (U)p dv

>C inf
PeP; (|PR,W| (x) (x +at=2)")"

>CArinp (We, 1) / (W (v +a?) ],
by our restricted range inequalities. Using Step 1 above, we continue this as
Z2CQ 1, (x) ~ @ (x),
as
X € [0, a,/4] = Qppn — X ~A; — X5 AQ(14n) — X ™~ A — X,
o)

Qran (X) ~ @, (X).

RangeB: x € [a;/4, d)
Here as < 1,

Asp (W, x) /[W (x) (x + a,t-Z)P]p

—7\P
>C inf g‘ (|PWT|(v)vp T) dv

PE(1PWI 00 (x + a2 (x + ar?)7)

- C( ar )“’—”1’ e Jo (PWe )" dv
T \x + a2 PeP; (|PW] (x) (x + a;t=2)")”

>CAp(We, x) / (W@ (v + affz)f]p >Co,(v). O
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The proof of the upper bounds for the Christoffel functions implicit in
Theorem 6.2(a). Let us setr = —%. We do this in three steps:
Stepl. The case = 7: Let

W# () = W* ()Y2 = exp(-30* (1)), xel* = (—«/Z, JE).

ThenW# e F(C?). Let L > 0. Denote bya?, ¢ and so on, the analogues af, ¢,
for W#. From [8, Theorem 9.3(c), p. 257] and [8, (9.18), p. 256] we have Jor
[0, a} (1+ Lr})],

o e | PWH ) du

R P (V)

= nan (W' 35) / (w7 ()"
(%)

- ()

+

Let P € P, denote a minimizing polynomial, achieving the inf in the left-hand side

(a compactness argument shows that it exists). Sifice as, = /an andn? ~ N3, ™~
ns ~ 1n,, we can reformulate the above as

X
1— —
an

f1*|P2W*|p(u)du<C @
[P2ws[" (V) ‘

1- X
n

+ 1,

Now let us define a polynomidl, of degree<n by
S, (uz) — P2+ P (—u)?.
Thens,, is a non-negative polynomial with

Sy (x) = P? (V).
As W* is even, we deduce that fore [0, a, (1+ Lu,)],

X
Jie [0 @) W* @)|" du _ ‘1‘6
S, cyw= (Vx)|” T m x
‘1—(1— +7’]n
n

A substitutionu = /v gives

bt [ (0 (s+ ) ) <

providedx € [0, a, (1+ Lu,)].

1
S+ 1S W) ()I7 —Udv
_1/2 <Cq0n (x) )

(S, W)? (x) (x + Z—’;)
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Step2. The case > 1: We consider two ranges of
RangeA: x € [0, a/4]
We use the polynomialR[, 2} from Lemma6.3 of degree<n/2 that satisfy

_2\¥P
Rz @) ~ (v+an2) ", v €0 aznz] 210, ap-al.

Then as above, our restricted range inequality Theorem 5.2(a) gives
PP
Jnp (Wp,x)/[W(x) (x +ann*2) ]

L3 (1PWel @) (v + a2 )" du

. a,l/n2
<C inf

e (lPWI ) (x +ann2)" " (x + ann*Z)T)

p

fain/;z12 |PWT/R[n/2]| ()P dv

<C inf 7
PEP (|PW/Rpnjz| () (x + awn2)’)

. S |PLW:| )P dv
PP (|PLW] () (x + agn=2)°)"

= CAny2),p Wz, x) /(W (x) (x + a,,n—Z)r>p

SCPpyz (X) ~ @y (),
by the result of Step 1 above, and as

<C

X € [O,an/4] = A[nj2] — X~ ay — X ~ a — X,
SO(p[n/Z] (x) ~ (pn (x)

RangeB.
x € lan/a, ay (1+L11n)]: We use our restricted range inequalities gnd> 7t to
deduce that

dn,p (Wp, x) /[W (x) (x + ann—2)P]p

<C inf f’;'tn/"z (lPWT| ) (v + annfz)ﬂ—f)” dv

PePy (IPW| () (x + a,,n—z)p_T (x + ann—z)r)

p

[ |PWe| ()P dv

p=T P /
<C . inf n 1
<(X+ann_z)9—7> PPy (|PW| (x) (x + aun=2)")"

[ | PWe| (v)P dv

inf —_“n/"’
PPy (IPW] (x) (x + ann_z)r)
by the results of Step 1.

7 <Co, (x),
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Step3. The case < 1: We let¢ be a fixed integer © — p. We use the fact that if
P1 € Pu_s, thenP (u) = P1 () (u + ayn=2)t € P,. Then

Jnp (va x) /[W (x) <x + ann*Z)/’]p

|PW,| ()P dv

an/n2

<C inf 5
rep (|PW| ) (v +an=2)")

B (e e D
< in

P1€Py—¢ (|P1W| (x) (x +a nfz)ﬂJrE)

2 | PLWpie| ()P dv

a, /n

<C inf ;
P1ePy—¢ (|P1W| (x) (x +ayn )IH' )

p
<Chy—y (WﬂH’ x) /(W (x) (x + ann_z)ﬁl)
<C(/)”_g ()C) ~ @y, (x) )

by the results of Step 2, sinéet p > 7, and by Lemmat.4. [

Proof of the rest of Theorems 6.1 and 6.21f we combine the lower bounds fd; , and
the upper bounds fot, ,, we obtain, for the relevant range of

C10, (x) < A,,p(Wp,x)/(W (x) (x +a,t*2)f’)p

< App (Wp, x) /(W x) (x + atfz)p)p
< G20y (%) ~ @ (x).

With n = [¢], this then gives the- relations in both Theorems 6.1(a) and 6.2(a). The lower
bounds in Theorem 6.2(b) follow immediately from those in Theorem 6.1(b). Finally we
note that Theorem 6.1 gives Theorem 6.2 onlydgfng and some thresholdy. For the
remaining finitely many integers, (6.9) follows as both sides of (6.9) are positive continuous
functions. The same is true of (6.10) except that sihisenot compact we also need to use
restricted range inequalities ]

7. Zeros of orthogonal polynomials
Thenth orthonormal polynomiap,, , (x) has zeros {4, ,};_,, where
0 < Xunp <Xn-1np <- -+ <Xomp <Xlnp <d.

In our estimation op,, ,(x), we shall need bounds on the zeros and on the spacing between
the zeros. In this section, we establish these, thereby also obtaining Thedrem
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We begin by showing that all the zeros gf(W?2, x) lie in A
quence of our restricted range inequality Theofef

ntptd as a simple conse-

Theorem 7.1. Let W := ¢~ ¢ whereQ : I — [0, co) is such thatQ* (x) = Q (x?) is
convex inf*. Assume moreovethat Q(d—) = coand Q(x) > 0 = Q(0), x € I\{0}. Let
p > —3.Then forn>1,

Xinp < dpipyd- (7.1)

It is interesting that forp = 0 and for weights on the whole real IineH%1 has to be
replaced bya, 1 [8]. The reason for the better estimate here comes from the slightly

different restricted range inequalities we obtain for subinterva8,afo). We note that it is
possible to prove a generalisation of Theorem 7.1fpextremal polynomials, as in [8].

There are a number of simple monotonicity and interlacing properties for the zeros of
the orthogonal polynomials:

Theorem 7.2. Let W be a continuous function oh such thatw? has all finite power
moments. Lep > —% and let¢ be a positive integer.
(a) Foreachn>j>1,x;,,, is a non-decreasing function pf

(b)
X1n,p SX1n,p+ S XL n+e,p-

(c) For n>2¢, pu.e4p has at leasts — 2¢ sign changes if{xun,p, Xn—1.n,p5 - - -+ X1np}-
Moreover,foreachj € {2¢ +1,2¢+ 3, ..., n},

Xjn,prt SXj—20,m,p SXj—20n,p-L- (7.2)

Remark. By a sign change iffxi, p, xk—1.1,0}, We mean thap, ¢4y (xn.p) and ppe4p
(Xx—1,n,p) have opposite sign, so thay, ¢+, has an odd number of zeros(itk,. p, Xk—1,1,p)-

We note that in the special case of Laguerre weighés *, the monotonicity of the zeros
in p is classica[23, pp. 122-123]. On the more quantitative side, we prove:

Theorem 7.3. LetW € £ (C2?) andp > —3.
(@) Uniformly forn>1,

Xpn,p ™~ ann_z. (7.3)

(b) For n large enough,

X1n,p
Ay

1—

<.

If in addition, W € £ (C2+), we can replace< by ~.
(c) For someC > 0,

Xj—1,n,p _xjn,pgcq)n(xjn), 2<j<n. (74)
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We begin with

The Proof of Theorem7.1. We use the well known formula

B f; x(PW)2(x) dx
M = O (PW,)2() dx (7.5)

This is an easy consequence of the Gauss quadrature formméffmee for examplf23,
p. 187]. In turn this implies that far > O,

X
o _ Ik (1 — Z) (PW,)2(x)dx
1-—= = min

ar  PePos [ (PW,)2(x)dx

(7.6)

Now we proceed as in the proof of Theorem 11.18np. 315]. Lett =n +p + ;11, p=2,
andr = t. We note first that foi? € P,_1\{0}

112
‘1— ~| IPW|eP, 1 =P

az

3.
1—p—2y

Then Theoren.1 with the above choices of p and withf = p gives

/ 1— 2 (PW,)%(x)dx < / 1— 2 (PW,)%(x) dx.
I\A; ar " a
Since 1— ail > 0 in the right-hand integral except when= a,, we deduce that

/ <1— ﬁ) (PW,)2(x)dx > O.
I az

Then (7.6) gives

1-2" 2o

ag

O

= Xlp < dr = an+p+%'
Proof of Theorem 7.2. (a) If wy andw; are positive continuous weights on a compact
interval[a, b] andw,/w1 is a strictly increasing function ifu, ], then a classical result
[23, Theorem 6.12.2, p. 116] asserts that

Xjn (wy) < Xjn (w2),

wherex, (wy) denotes theth zero of p, (wy). In our situation, ift > p, W;/W, is a
strictly increasing function id. However, the classical result cannot be applied directly to
W, andW,, sincel is not compact. (However Szego applies the result to Laguerre weights
without further explanation.) We can replat®y I, = [e, inf {d — e, 1}], wheree > Ois
small, and apply the result to the weights, and W, restricted tol;. If we fix n, and let

¢ — 0+, and use continuity im, of the orthogonal polynomial of degreewith respect to

the Weighth2 restricted tol,, we then obtain the result.
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(b) By (a),
Xln,p gxln,p+€'
Moreover, the extremal formula (7.5) gives
fle2 (x)xZZW/? (x)dx
max
degP)<n-1 [; P?(x)x? Wg (x)dx
xPZ(x) W2 (x)dx
¢ max  HFPPOWE
degP)<n+t-1 [, P2 (x) Wg (x)dx

Xln,p+€ =

= X1,n+L,p-
(c) Let P be a polynomial of degree.n — 2¢ — 1. By the Gauss quadrature formula,
Xn:in (Wg, xjn,p) ij'ﬁ,ppn,p% (xjn,ﬂ) P (xjn’/’)
j=1
- f[ X2 py pae () P (6) W2 (x) dx

= /Ipn,p+e (x) P (x) W3+z (x)dx =0.

This discrete orthogonality condition implies that , . has at least — 2¢ sign changes

iN {Xnn,ps Xn—Lnps - - - » X1n,p |- SUPPOSE NOL, SO that there areCn — 2¢ — 1 sign changes.
Let S be a polynomial of degre with zeros at those sign changes. Note that all zeros of
S are zeros op,, ,+¢ and (if necessary multiplying by —1)

(pn,p+ls) (xjn,p) >0, 1< j<n.

By the above orthogonality condition, and the fact that all zerds afe zeros op,, ¢,
n
D (Wg’ xjmﬂ) x5 pPnpre (Xjnp) S (xjn.p) =0
j=1

= Pnpte (xjnp) =0, 1< j<n.
Thenp, ,. is a constant multiple of, ,, so for all P of deg<n — 1,
/ Prp+e (@) P (1) Wi (x)dx =0= / Pap+e () P (1) x* W (x) dx.
1 1

Then it follows (because of orthogonality and as n £ -2 1) that for all P of degree
<n+2¢-1,

/Ipn,p+z (x) P (x) W} (x)dx =0,

which forcesp,, ;. to be the zero polynomial, a contradiction.
Finally, we must prove (7.2). Suppose that for soime

Xjn,p+€ = Xj—20n,p-
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Thenp,, ,.¢ has at most — j zeros inxu,,p, Xj—2¢.1,p], @and S0 at most — j sign changes
iN {Xun.ps Xn—1,n.p: - - - - Xj—20.n,p |- By OUr first assertion, it must then have at least 2¢
sign changes ir{xj,zg,n,p, Xj_20—1nps---s xl,n,p}, which is impossible as the latter set
has onlyj — 2¢ elements. So

Xjn,p+e <xj72l,n,p-

The right-hand inequality in (7.2) follows from (a)J

Nextwe record the desired inequalities for the zergs,of 1 /4, which follow from results
in [8].

Lemma 7.4. LetW € £ (C?) andt = —1.
(a) For someC > 0andn large enough

Xln,t
dnp

1

<c,. (7.7)

IfalsoW € £ (C2+), then we have- in (7.7).
(b) For someC > 0,

Xjna = Xj4lns SCQ,(xjn), 1< j<n— 1 (7.8)
(c) Fix m >0.For n large enough,
Xn—m.n.t <Capn™2. (7.9)
Proof. (a) Assume thaW € £ (C2+). Recall from (1.7) that
P (Wf, tz) = P2 (W*Z, t)
o)
Xjmr = (x;fz")z. (7.10)
By Theorem 1.19(f) iff8, p. 23], which is applicable as W £ (C2+) = W* € F (C2+),
X1 2,

*
- "~ o

2n

SO

2

X1 X7 2

n,t N *

1- 21_( ¥ ) ~ Ny ™~ My
ay azn

If we only know thatW e £ (C?), we can apply instead Theorem 11.3[& p. 314] to
obtain (7.7).
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(b) By (7.10), and Theorem 11.4 in [8, p. 315],
Xjnt = Xj+lnt = (szn + xf+1,zz) (X;Zn - x7+1,2n>
< O3 (¥20) ~ @ (i)

by (6.13).
(c) Note that asv* is even, the spacing in [8, Theorem 11.4, p. 315] gives

x %
2X) 00 =Xy 20 — X120 <C O3, (75 2,)
x*
n,2n

whence
Xont = (x;f’zn)z QC%.
Similarly, the spacing in (b) gives
Xn—1nt < Xnnr + CO, (Xnn,o)

a X a a
gc_y;_kC«/ nn,tngcn
n n

Continuing thisn times gives (7.9). [

Proof of Theorem 7.3(a), (b).(a) By the classical extremal property for smallest zeros,
and our restricted range inequality Theorem 5.2(a),

Jy xP2(x) W2 (x) dx

= inf
Xnn,p = degP)<n 1 f[ P2 (x) W2 (x)dx
j“" ) P2 (x) W3 (x) dx
> -
n2 degP)<n 1 [, P2(x) W2 (x) dx
> cd
= nz

Next, choose a positive integésuch that 4+ t > p. By Theorem 7.2(a),

Xnn,p <xnn,r+€

and by Theoren7.2(c),

Xnn,t+L gxn—ZZ,n,f-

Lemma7.4(c) gives

An
Xn—20,n,t < C_2
n
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Combining these gives
<C—
X, .
nn,p X 2

(b) Casel. p > t: Let us assume thav € L (C2+). Choose a positive integérsuch
thatt 4+ ¢ > p. By Theorem7.2(a)

Xln,t gxln,p gxln,r-i—(

and by Theoren7.2(b),

X1n, 140 S X1 ptt,r-

Then
X X
1_— 1n,p 2 1— 1.n+0,T
an ay
— 1 X1, n+tl,1 + X1,n+t,1 < dap B 1) '
An+e¢ an An+¢

Here from (3.9),

a, B 1 B
e 17O <nT(an)> = (m).

while from Lemmar.4(a),

1- aEAALPN NMne ™~ M-
A+t
So at least for large enough
X1n,p
An

1-— =Cn,.

In the other direction, Lemm@a.4(a) gives

X1n,p Xin,t

1—

<1-

dn an

<Cn,.

If only W € £ (C?), this last relation gives all that is needed.
Casell. p < 1: Let us assume tha¥ € £ (C?+). Choose a positive integérsuch that
¢+ p > t. Here Theoren7.2(a), (b) give
X1n,p S X1n,t S X1n,04p SXLn+e,p-
Then from Lemm& .4(a),

Xn,t X1,n+t,p

Cny>1— >1-

dn dn

Much as above this yields, for large enough

X1,n+e,p
1 oy,
Aan+¢
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Replacing: + ¢ by n gives for large enough,

X1.n,p

1- <C’7n-

n

In the other direction,

Xln,p Xln,t
P S .
=
an an

1—

=Cn,.

If only W e £ (C?), the first part of the proof gives all that is needed

Our proof of Theoren7.3(c) is based on an extension of a classical inequality of Erdds and
Turan for sums of successive fundamental polynomials. One such extension was presented
in [9], and reproduced in [8, p. 320ff.]. That requiredto be convex, which is not always
true for the weights in this work. So we present another extension, which allowgcy Q
to be increasing, but holds only on subintervals®@fco). Yet another extension was given
in [25].

We note that it is possible to give another proof of Theorem 7.3(c) based on the estimates
in Lemma 7.4, and the inequalities in Theorem 7.2. But we feel the following lemma is of
independent interest.

Lemma 7.5. Let
O<asyi<y2<---<ym<b

and{¢;(x) '}Ll C P, -1 denote the corresponding fundamental polynomials of Lagrange
interpolation,so that

Zj(yk) = 5j,k,m1<j, k<m.

Letw : (a,b) — (0, c0) and assume that := Iog% is such that;” exists and such that
xq’ (x) is non-decreasing ifiy1, y;;]. Then forl<j<m — 1,

L w yHwE) + Lpa@w Ny Dw) =1 x € [y, yjsal (7.11)
We first need a zero counting lemma:

Lemma 7.6. Under the hypotheses bémma7.5,if P € P,, has only real zerosall lying
in[s, 7] C (0, 00), ands, ¢ are zerosthen(Pw)’ has at mosin — 1 distinct zeros lying in
[s,t]1 N (a, b).

Proof. Let
O<s=x1<xo<---<x)=t
denote the distinct zeros &f, with multiplicitiesny, no, . .., nj respectively. Since

(Pw) =0= P —¢g'P =0,
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we see that zeros ¢fw)’ occur whereP has a multiple zero or where

hasg(x) = ¢’(x). Now we count the zeros @f— ¢’. Since we are working on a subinterval
of (0, 00), this is the same as counting the zeros of the functigtx) — x¢’ (x). Here

k
d Xinj
gy =-) —5 <0,

2
j=1 (x _xj)

Soxg (x) — xq’ (x) is strictly decreasing ifix;, xj+1) N (a, b), so has at most one zero
there. (There will be exactly one zero(i;, x;1) C (a, b).) Thus(Pw)" has at most one
zero in(x;, xj41) N (a, b), 1<j < k, and zeros at; iff n;>2. Then in[s, 1] N (a, b),
(Pw)’ has at most

k k
k=14 max0,n; - 1)< -1+ nj<m—1
j=1 j=1

distinct zeros. O
We turn to the

Proof of Lemma 7.5. Now thatwe have Lemma 7.6, thisis identical to that of Lemma 11.8
in [8, p. 322], but we include the details for the reader’s conveniencej kid let

P(x) :=L;(x)/w(y;) + £j41(x)/w(yj+1).

ThenP € P,_1 hasm — 2 zeros a{y1, y2, ..., ¥j 1. ¥j+2. ..., ym} and
(Pw)(yj) = 1= (Pw)(yj+1)-

Its remaining zero must also be real. By Rolle’s theoréPy)’ has a zero iriyy, yr+1) for
ke{l,2,....om—1N{j—1,j+1}

a total ofm — 3 distinct zeros. From the lemma, it can have at most 2 distinct zeros in
[y1, ym]. We claim that

(Pw) (yj)=0=(Pw) (yj+1)- (7.12)

Once we have proved this, it follows th@Pw)’ has exactly one zero ify;, y;+1) at its
local maximum in this interval (otherwise it would have to haw& distinct zeros in this
interval, giving>=m — 1 zeros in all, which is impossible: a sketch of the situation will assist
the reader). The®w increases from 1 at; to its maximum and then decreases againto 1
aty;;1, giving (7.11).

We proceed to prove (7.12). Suppose first thatj2<m — 2 and suppose for example
(Pw)'(yj+1) > 0. Then we see thatPw)’ must have at least one zero (fj1, y;+2)
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(recall that(Pw)(y;+1) = 1; (Pw)(y;+2) = 0, again a sketch will help). Then we already
have counted: — 2 distinct zeros of Pw)’, so there are no more. But theAw)'(y;) < 0
(for else, (Pw) has at least one local maximum and minimum[in, y;+1) So (Pw)’
has 2 zeros there, and this is impossible: consider separately the(Pasgéy;) = 0 or
> 0). Since(Pw)(y;) = 1> 0= (Pw)(yj—1), (Pw)" has one more zero iy;_1, y;)
giving >m — 1 zeros, which is impossible. So in this case we have the right-hand side of
(7.12) and the other half of (7.12) is similar (or can be deduced by considgrimg(—x)
with points—y;, 1< j <m).Forj = 1 or m—1, this argument requires minor modifications.

O

Finally, we turn to:

Proof of Theorem 7.3(c). Let {Zjn}Ll denote the fundamental polynomials of Lagrange
interpolation at the zero{scj,,,,)}’;:1 of the orthogonal polynomialg,, , (x), so that

Ejn(xkn)zéjka 1<j, k<n.
A classical formula for the weights in the Gauss quadrature formula is
Ajn = (W5, Xjn.p) = /z?nwj.
i
Then applying Lemma.5 withw = W?2,
2jnW 2 X jnp) + 2j-1.aW 2 (xj~1n,p)

- /1 (W 20p) + 2y W25 10 W2

Xj—1n,p
> [ W ) + WA W
X

Jn.p

L 1 -1 20172
Z = (EjnW (xjn,p) +£j—1,nW (xj—l,n,p)) Wp
Xjn.p
1 [riztnr 5 2p+1 2p+1
Z P prlo et
> 2/x X dx}C(xj_l’n’p Xin.p ). (7.13)

jn.p

(We used the inequality? + 2> 3 (s + )2 in the second last line.) The inequality
y2”+l — x>y (y —x) maX{yZP, pr} , y>x>0,

whereCy is independent aof andy, enables us to reformulate the above as
)bjn W_z(xjn,p) + ij—l,nW_z(xj—l,n,p)

2p 2p
=>C (xj—l,n,p - xj”s/’) max{xjfl,n,p’ xjn,p} :
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Using our estimates for Christoffel functions in Theoré&r8, we obtain for som€ #
C@.n
. . 2p 2p
(Xj—1mp = Xjn.p) max{xj—l,n,p’ xjn,p]
2 2
SC@u&ju,p) X )+ PuXjm1.0.0)X5 1, )
2p 2p
< C(q)n(xjn,p) + @, (xj—l,n,p)) max[xj_l,n’p, xjn,p} ,
SO
Xj—1.np — Xjn,p gc((/)n(xjn,p) + ¢, (xj—l,n,p))-

But if, for examplep,, (xj,.p) < @, (x;-1,,,p) this gives

Xji—1np = Xjinp<CP,(Xj—1,n,p)

and then Lemmd.3 shows that

On(Xjnp) ~ @p(Xj—1n.p)- (7.14)

So the desired inequality follows. The cagg(xj, p) = @, (x;-1,,,p) is similar. ]

8. Bounds on orthogonal polynomials
We prove Theorem.2, which we restate here:

Theorem 8.1. LetW € L (C2) ,p > —% and letp, , (x) be thenth orthonormal polyno-
mial for the weightWPZ. Then uniformly fomn > 1,

a, \ P a 1/4
Ul ()| W () (x+ ﬁ) ’(x + ﬁ) (an — x)‘ ~1. (8.1)
The proof of Theoren8.1 is similar in spirit—and easier—than its analogue for weights
on two-sided intervals, Theorem 12.1in [8, p. 326]. The broad outlines of the method were
introduced by Bonan and Clark [1] and extended by Mhaskar [11], and the authors. The
method has also recently been used by Kasuga and Sakai in [6].

We shall first prove the upper bound fore [¢a,, a,], any O< ¢ < 1, and then treat the
rest of the range of. Before proceeding to the first step, let us recall some notation: the
zeros ofp, ,(x) = pn(Wg, x) are denoted by

0 < Xpnp < Xn—inp < '+ <Xmp <Xinp <d
andy, , denotes the (positive) leading coefficient;gf , (x). Thenth reproducing kernel

function is

n—1

K p(x, 1) = K, (W2, x,1) := Z Pjp(X)pj p(0). (8.2)
Jj=0
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The Christoffel-Darboux formula provides an alternative representatiaki,for

yn—l,p pn,p(x)pn—l,p(t) - pn,p(t)pn—l,p(x)

K e 8.3
n,p(x ) Tep . — 1 (8.3)
Lettingt — x gives
/1;})()() = /l;l(Wz, )C) = Kn’p(x’ x)
_ ynfl,p / /
= [Pp, p () Pn=1,p(X) = Py_1 p(X) P, p(x)] (8.4)
n,p
and in particular for = x;, , we obtain
1 anl,p ’
j-n,p(xjn,p) = y—pn,p(xjn,p)pn—l,p(xjn,p)' (85)
n,p
Lemma 8.2. Letp > —3 and0 < ¢ < 1.LetW € £ (C?). Then uniformly fom >1,
SUP [P, p ()W ()xP|x (an — x) [V4<C. (8.6)

x€leay,az)

Proof. Lett = —711. First recall thau;ﬁ = a, and from (1.7),

oo () = pn (W21).

The bounds for the latter polynomials[®, Theorem 1.17, p. 22] give fore I'*

-1/4
*2 2
azn —1 ‘ .

o () W () = (w2 ) 0] <

Fix an integerj. On replacing: by n + j and then? by x,

1/4

ap — X
/= , xel

|Pntjc )| W (x) lan —xY*<C

an+j — X

Using (3.9), we see that for large enougtthis last right-hand side is bounded above by
a constant independent of x for x € [0,a, (1—#,)]. Our restricted range inequality
Theorem 5.2 gives

SUP|pat W1 (x) la, — x4 <C. (8.7)
xel
Now choose non-negative integérs such that
k+p>-3 and ¢—p>0. (8.8)
Also let

Bi=2p—L+k+ 3. (8.9)
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For a fixedx € [ea,, az,], let
S (@) = 1xP. (8.10)
We may write

(PusS) ) = [ Kovess (0.0 (00p8) 0 W2 )
= [ Kuserae 60 oy 0[5 = ] W2 0
1

+ / Knststz (62 0) pup (0 (FHEW2 (1) di
1

Lt (8.11)

Estimation of 1,. By choice off}, orthogonality, and then Cauchy—Schwarz,

n+t
= | [ {# X pic i) prp O WE 0
Y j=n—k
— 1/2
n+t 2 !
< / 3 P @ i) | W2y
1 .
j=n—k

Now we use our restricted range inequality (5.7), and then (8.7) to obtain{ap,,

|| W (x) |ay — x|¥4

az (1 2%+2p o 1M?
0 la, —t]
Co ¢2p+2k 1/2

< Cafthrt/A |:/ ————>ds+ 0 (e_"c>:| ,
’ o [1-st?

providedCy is so large thatip, /a, < Co. Here the integral converges ag 2 2k > —1.
Sincex € [gay,, az,], we obtain

|| W (x) |ay — x|Y* < CxP LA, (8.12)

Estimation of I1. By the Christoffel-Darboux identity,

Tn+e,
I = _/n+b1 {pn+€+1,f (x) 11,1 — Pndt,1 (x) 11,2} ’
Yn+e+1t
where

B _ 4B

X t

Ii= / Putece () Pup (1) #< — )WE(r)dr,
’ -

B_ B
; )WTZ (t)dt.

X
11,2=/pn+l+1,r () pn.p (1) ll(
I
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Now our restricted range inequality Theoré&n2(a), applied t(Wﬁ gives form > 1,

Ym—1,
—ﬂ——ﬁ==(/xpmm(x>pm_1ﬁ(x>Wf(x)dx
’ym,p 1

am
< Cam/o | Pmp () Pm—1.,p ()] W5 (x) dx < Cap. (8.13)

Using this, our bound (8.7), (5.7), and Cauchy—Schwarz gives
|| W (x) la, — x|

a2 20-2p-1 [ B _ B 2d e
<Ca t+0 (e_ )
<cu| [ oz (5
Let y = x/a,. The substitution = a,s gives for some_1,
|| W (x) ap — x[Y*

2

C1 20—2p—1 B

gcaﬁ_p+[g_1/4 / 1 s P Xﬁ - S[ dS + O (e—nc)
o 11—s¥2\ z—s

1/2

1/2

we see that for € [0, 8/2],

2 2
B_ B ,B-1
L—S 2

and fors € [¢/2, C], the mean value theorem gives for soéneetweerns andy,

=P\ N2
- = (ﬁfﬁ_ ) <C1.
L=
So, using our choice df,
|| W (x) la, — x|

C1 20-2p-1
< CalthH1/A (/O G_wds ) (e—nc>> <Cal YA

2
We claim that the ter /ﬁ—_zﬁ> is bounded independently of s, x. Indeed ay < [¢, C],

sincel — p > 0. Asx € [eay,, az,], this leads to the estimate
1] W (x) lay — x|Y* < CxPTRHLA,

Finally, combining this last estimate, (8.11) and (8.12), and since
S (x) = x[)’+e _ x2p+k+1/27

we obtain,

|Pnp ()W ()| xP |x (an —x)M*<C. O
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The method for the rest of the range involves the function

2 -
Al @) == [ (pap W) O(x, 1) dt, (8.14)
P x J

where

—  xQ'(x)—tQ'(t
oG FYW 1@
x —t
The first step involves an identity for, ,(x;x,p):
Lemma 8.3.

Vn—-1,
p,;(xjn,p) = ,;—pAﬁ,p(xjn,p)pn—l,p(xjn,p)- (8-15)

n.p

Proof. Let K, ,(x,t) denote the reproducing kernel for the Weighf. Sincep;l,p has
degree<n — 1,

Kinp Py i) = /1 Kos1,p (s 019 (O W2(0)
= [ Koo 108, W0 .
1

since py (xj,,)p) = 0. We integrate this last relation by parts. Using the fact that the
integrand vanishes at O (recall that-12p > 0) andd, as well as orthogonality, we obtain

xjn,pp;;,p(xjn,p) = /Ipn,p(t)Kn,p(xjn,psI)ZtQ/(t)Wg(t) dt.

Next, the Christoffel-Darboux formula gives

Yn—1,
xj"vﬂpl;,/)(xj"vp): - an—l,p (xjn,ﬂ)
n.p
2
P @
x|2 | 22210 (1) W2 (1) dt |. (8.16)
1t—X; P
Jjn.p
Then orthogonality gives
Yn—1, 2
P;,,p(xjn,p)z l: ppn—lﬁ (xjn,p) —
n,p Xjn.p
tQ' (t) — xjn Q/(x'n )
2 jn.p jn.p 2
X/Ipn,p(t)|: P— Wi (1)dt
jn.p
VYn—1,
= n—pAff,p(xjn,p)Pn—l,p(xjn,p)~ O

Y

n,p
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The next step is to use this identity to boupg x) in terms of A% and 4,

Lemma 8.4. For 1< j <n,
) s 1/2
1Pup NI = xjupl [Znp 0245 Cin )] (8.17)

Proof. Applying the Cauchy—-Schwartz inequality &5, , (x, x ) gives

| K (o X ) < 2 3 200 20y 52 )

while (8.5) and Lemma 8.3 give

2

A

—1 /nfl,p #

j-n,p(xjn,p) = |: . pn—l,p(xjn,p):| An’p(xjn,p)-
np

Applying this identity and the last inequality to the Christoffel-Darboux formula (8.3) in
the form

Yn—1,
Pn,p(x) = Kn,p(x» xjn,p)(x - xjn,p) /|: - ppn—l,p(xjn,p):|

yn,p

gives the result. [J

For a given y we can choose;, , to be the closest zero ¢f, , to x on the left or right,
and use our bounds far— x, , from Theoren¥.3 together with our bounds fay, , from
Theorem 1.3 to obtain a bound involvingf,p(xjn,p). ChooseM > 1 such that for large
enoughn,

dn

Xnnp > 35 (8.18)

(This is possible by Theoref3.) We fixe € (0, %) and set
an

T = [W ean]. (8.19)
In the sequel, we also need the notation

¥ () 1= (g W) (x+ 55 )| (x4 55) (@0 — )| (8:20)
and

O, (x) := A} ()¢, (xX)|x(ay — x)[*2. (8.21)

The next step is to bourl,, in terms of®,,.

Lemma 8.5. Letx € J, = [4;%3, eay] andx;, , denote the closest zero on the left or right

to x, restricted to lie in7,. Then for som&1 # C1(n, ¢, x),

lIIn()c)<C1®n(xjn,p)~ (8.22)
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Proof. From Theoren¥.3(c),
[x — xju| KC, (Xkn), (8.23)
wherek is eitherj + 1 or j. Asin (7.14), Lemma 4.3 gives

@n(xkn,p) ~ (Pn(xjn,p) ~ qon(x)'
Next, from Theorenmi..3,

_ dap P
Imp W20 (x +55) 7 ~ 0,00 ~ 0, (xjup).
n
Combining this, (8.17) and (8.23) gives
W (1) SCAR (X p) 0y (X, p) X (x — a) |2,
It remains to show that
|x —an| ~ |Xjnp —an| and x ~xj, .

This is easily established:

an — X Xj=Lnp — Xj+1lnp

=14 g

- X

an — Xjn,p an — Xjn,p an — Xjn,p
Co,(Xinp) (Xjn,p)

n Pn\Xjn.p <1+C(p" jn.p
an — Xjn,p ap

Xjn.p + ann~2az,
n/anan

by Theoren¥.3(c) and (1.18). Similarly we derive a lower bound. The proofthatx;, ,
is similar. [

<1

<1+C <1+ —=-<C

C
n

Now we prove:

Lemma 8.6. Lety > 0. There exist € (O, %) , C(¢), andng such that fom > ng,
1Oull L7 <CE) +nllWallLo)- (8.24)
Proof. We split

2 ﬁ eay an d -
Aﬁp(x) = - / +/ +/ +/ (pn,pr)z(t)Q(x,t)dt
' X 0 ﬁz eay an

=1+ I+ I3+ 1.

Note that asc € J, = [Aj—nz san], ande < % (1.18) shows

0, (0)|x(ay — x)Y2~ 2E (8.25)
n
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We shall fixn; > O (to be chosen small enough later, depending)olVe can choose so
small that

2eay <ayyn, (8.26)

in view of (3.3). Inly ast <x/2,

W _2gwm<c
x/2 Xayn

in view of (8.26) and (3.11). Her€, is independent of, x, n; (as are the constants below).
Then

Q. 1)<

2p
t
I < 3/2 II‘P ||Loo(1) a dt
\/ _ t) t+ ﬁ
2p
nin 1 2M 1 ( s )
< C—w—|¥ - —_— ds,
x3/ZWll n”LOO(I)n y Girilstl
by the substitution = ngs. Using (8.25), we continue this as
a
19, () x(an — 1Y < B2 1w, 1
nn 1
< Cny | ¥l Loy
nin
sincex > “"2 Using (3.3), we continue this as
— oM< ot 8.27

L1, () |x(an — )17 °<Cny Yol - (8.27)

Next,
2p
2 fn Q(x,t) t
L < ;ll‘Pnlleu) dt

j\/t(an—t) t+a_;
n

2Mn
dngn (x 1) apggn —t
< Sl f dar sup [Pl
[t a’h" t 1€[0,ayqnl ap —t

1 a
< CIYall Lo (1yTyyn (X) a’—
x (apy —x) T

1 anqn

Py (X)X (ang —x) ¥

< Cl¥ullLeom
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by (4.8) and (4.10). Here<¢ea, = x < %aw. Using (8.25) onp,,. ,, (x) ando, (x), we
deduce that

Min  [Gpyn GnX
20, () = an) M2 < CIMa iy 2 S5
n

a,h,, n

dn

17
SCI¥nllLwmn, .

< ClWallLoo iy
nmn

by (3.3) again. Thug, admits the same estimate A(in (8.27)). Since A > 1 andC is
independent of € 7, andr andy,, we may choos@, so small that for alk andx € 7,,
(I + I2) @, () |x(an — )72 < Wl Lo 1) (8.28)

Next, by the bounds op,, that we already have for> ca,,,
< C [ 26D
X Jea, t(an —1)
o (x) C

<C < )
VX (ap —x) (Pn(x)\/x(an_x)
by (4.8) and (4.10), so

139, (x)y/x (an —x)<C. (8.29)

Finally,

I4

N

d /
E/ O W) () di

X t—x
d ) ,
<t QO e O

Here an integration by parts, and orthonormality, give

/ 2 1
/IIQ () (Pn,pr) (t)dt =n~|—p+§.

Then

C  ayx
n
xa, n

=C.

14, (x)y/x (@ — x) <

Combining the above estimates gives

O, (x) = A} , () @, (x)v/x (ay — x)

S C+nl¥allLem,
uniformly for n large enough and € 7,. O

We need one final lemma, which extends TheoB®{a) in allowing arbitrary powers of

(x—i—l“—ﬁ).
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Lemma 8.7. Letg € R, let A, 4 > 0and0 < p <oo. There exist€ > 0andzy > 0such
that forr > and P € Py,

[cPwy o (x+ f—;)

Ly(I)

<C H(PW) x) (x n %)g‘ . (8.30)

LplAart=2,az(1—2n5,)]

Proof. For ¢ >0, this follows easily from Theorerb.2(a). So we assume < 0. Let
n = [t]. By Lemma 6.3, there exist®, € P, such that for: € [0, az,],

an \° ar\°
Ry (x) (x n ﬁ) (x n 72) . (8.31)
Then for someC independent of, P,

a o
H(PW) (x) (x + t—;) < CIPR.W | L,10.a3]

Lp[0>02n]
S CIPRaWI L[ Aag1=2.az (1~ ) 1°
by Theorenb.2(a) applied ta? R,,. We continue this as

<crfewro (x+ %)

LylAayt=2,a3 (1—ny)] ’
(Note thatay, (1 — A175,) <az, for n large enough, by (3.9).) Finally as< 0,
ar\o
[cpwy o (x+ 72)

Lplazgn.d)

ar\°
< (azn + t_z) ||PW||L,,la2n,d)
ar\°
<C (azn + 72) IPWI L, [Aqzt-2,a2 (1—7ng )]

<C H(PW) (x) (x + %)6

LplAazt=2.az (1=inz)]
In the second last line we used Theorem 5.2(a). Finally we can reg@labg a, in the term
Aayt~2in the interval. O

Proof of Theorem 8.1. Let 0 < n < 1. By the results of Lemmas 8.5 and 8.6 we have for
somees > 0 andC7 independent of, ¢, 1,

sup [V, (x)| < C1 sup 0, (x)

xe[an/an,ean] xe[an/MnZ,ean]
< C1(CE +nl¥allLeom) -
Lemma 8.2 gives

sup ()< Ca.

x€lean,az]

Next, our restricted range inequality Lem&\& withe = 2p gives for som&3 independent
ofn,e,n

WallLewy < CalWallL o [an/(Mn?).az]
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< Csmax{C2, C1C (&) + Cunl¥allan} -
SinceC; andCs are independent of, we may choose = (C3C1)~! /2, to obtain

IWallLoo(r) < Ca.

The corresponding lower bound follows easily from the orthonormality relation

1=/pn,pvv§. 0
1

Acknowledgments

We thank the referees for finding several misprints and for helpful comments.

References

[1] S.Bonan, D.S. Clark, Estimates of the Hermite and the Freud polynomials, J. Approx. Theory 63 (1990) 210
—224.
[2] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann—Hilbert Approach, Courant Lecture
Notes, 1999.
[3] P. Deift, T. Kriecherbauer, K. McLaughlin, S. Venakides, X. Zhou, Strong asymptotics of orthogonal
polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999) 1491-1552.
[4] G. Freud, A. Giroux, Q.I. Rahman, On Approximation by Polynomials with Weight-exp|), Canad. J.
Math. 30 (1978) 358-372.
[5] J.B. Garnett, Bounded Analytic Functions, Academic Press, Orlando, 1981.
[6] T. Kasuga, R. Sakai, Orthonormal polynomials with generalized Freud type weights, J. Approx. Theory 121
(2003) 13-53.
[7] T. Kriecherbauer, K.T.-R. McLaughlin, Strong asymptotics of polynomials orthogonal with respect to Freud
weights, Internat. Math. Res. Notices 6 (1999) 299-333.
[8] E. Levin, D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
[9] D.S. Lubinsky, An extension of the Erdds-Turan inequality for sums of successive fundamental polynomials,
Ann. Numer. Math. 2 (1995) 305-309.
[10] G. Mastroianni, Polynomial inequalities, functional spaces and best approximation on the real semiaxis with
Laguerre weights, ETNA 14 (2003) 142-151.
[11] H.N. Mhaskar, Bounds for certain Freud-type orthogonal polynomials, J. Approx. Theory 63 (1990)
238-254.
[12] H.N. Mhaskar, Introduction to the Theory of Weighted Polynomial Approximation, World Scientific,
Singapore, 1996.
[13] H.N. Mhaskar, E.B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math.
Soc. 285 (1984) 204—234.
[14] H.N. Mhaskar, E.B. Saff, Where does the sup norm of a weighted polynomial live?, Constr. Approx. 1 (1985)
71-91.
[15] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series Il, Trans. Amer. Math. Soc. 147 (1970)
433-460.
[16] P. Nevai, Orthogonal polynomials, Memoirs Amer. Math. Soc. 213 (1979).
[17] P. Nevai, Geza Freud, orthogonal polynomials and Christoffel functions: a case study, J. Approx. Theory 48
(1986) 3-167.
[18] P. Nevai, V. Totik, Weighted polynomial inequalities, Constr. Approx. 2 (1986) 113-127.
[19] P. Nevai, P. Vertesi, Mean convergence of Hermite—Fejer interpolation, J. Math. Anal. Appl. 105 (1985)
26-58.



256 E. Levin, D. Lubinsky / Journal of Approximation Theory 134 (2005) 199—-256

[20] E.A. Rakhmanov, On asymptotic properties of polynomials orthogonal on the real axis, Math. USSR. Sbornik
47 (1984) 155-193.

[21] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Berlin, 1997.

[22] H.B. Stahl, V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

[23] G. Szegd, Orthogonal Polynomials, American Mathematical Society, Colloquium Publications, vol. 23,
American Mathematical Society, Providence, RI, 1975.

[24] V. Totik, Weighted Approximation with Varying Weights, Springer Lecture Notes in Mathematics, vol. 1300,
Springer, Berlin, 1994.

[25] P. Vertesi, On an interpolatory inequality of Erdés and Turan and its application, Period. Math. Hungar. 40
(2000) 195-203.



