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Abstract

Let I = [0, d), whered is finite or infinite. LetW� (x)= x� exp(−Q(x)), where�>− 1
2 andQ

is continuous and increasing onI , with limit ∞ atd. We study the orthonormal polynomials associ-
ated with the weightW2

� , obtaining bounds on the orthonormal polynomials, zeros, and Christoffel
functions. In addition, we obtain restricted range inequalities.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let

I = [0, d), (1.1)

where 0< d�∞. LetQ : I → [0,∞), and

W = exp(−Q) . (1.2)
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We callW an exponential weight onI . Typical examples would be

W (x) = exp
(−x�) , x ∈ [0,∞),

where� > 1
2 or

W (x) = exp
(− (1− x)−�) , x ∈ [0, 1),

where� > 0. For� > −1
2, we set

W� (x) := x�W (x) , x ∈ I.

The orthonormal polynomial of degreen for W2 is denoted bypn

(
W2, x

)
or justpn (x).

That forW2
� is denoted bypn

(
W2

� , x
)
or justpn,� (x). Thus∫

I

pn,� (x) pm,� (x) x2�W2 (x) dx = �mn (1.3)

and

pn,� (x) = �n,�x
n + · · · ,

where�n,� = �n
(
W2

�

)
> 0.

There isaverysubstantial bodyof researchdealingwithexponentialweightsonasubsetof
the real line, especially as regards the associated potential theory, weighted approximation,
and orthonormal polynomials. For some recent references on orthogonal polynomials for
exponential weights, and especially their asymptotics and quantitative estimates, the reader
may consult[2,3,6–8,10,21,22,24].
In our recent monograph [8], we dealt with exponential weights on a real interval(c, d)

containing 0 in its interior. A typical example would be the weight

W (x) =
{
exp
(− |x|�) , x ∈ (−∞, 0) ,

exp
(
− |x|�

)
, x ∈ [0,∞),

where�,� > 1. In all cases, the exponentQ grows to∞ at both endpoints of the interval.
In this paper, we look at the “one-sided” case whereQ increases from 0 at 0 to∞ at

d. This may be thought of as a limiting case of the two-sided case, in which the exponent
to the left of 0 grows to∞. However, the results of[8] cannot be applied through such a
limit, as the constants in the estimates there are not known to be uniform in the weight.
Moreover, there are significant differences in even the formulation of the results—just as
there are for the Laguerre and Hermite weights. Nevertheless, we can use the results from
[8] by defining an even weight corresponding to the one-sided weight.
GivenI andW as in (1.1) and (1.2), we define

I ∗ :=
(
−√d,

√
d
)

(1.4)
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and forx ∈ I ∗,

Q∗ (x) :=Q
(
x2
)
, (1.5)

W ∗ (x) := exp
(−Q∗ (x)

)
. (1.6)

In the special case

I = [0,∞) and Q(x) = x,

this substitution gives the Hermite polynomials from Laguerre polynomials. In our case, if
p2n

(
W ∗2, x

)
denotes the orthonormal polynomial of degree 2n for W ∗2, this substitution

yields the identity

pn,− 1
4

(
x2
)
= pn

(
W2
− 1

4
, x2
)
= p2n

(
W ∗2, x

)
. (1.7)

Our main focus is bounds onpn,� (x) and associated quantities. These include the zeros of
pn,�, which we denote by

xnn,� < xn−1,n,� < · · · < x2n,� < x1n,�,

and the Christoffel functions

�n

(
W2

� , x
)
= inf

deg(P )�n−1

∫
I

(
PW�

)2
P 2 (x)

.

Before stating some of our results, we need more notation. We say thatf : I → (0,∞) is
quasi-increasingif there existsC > 0 such that

f (x) �Cf (y) , 0< x < y < d.

Of course, any increasing function is quasi-increasing. The notation

f (x) ∼ g(x)

means that there are positive constantsC1, C2 such that for the relevant range ofx,

C1�f (x)/g(x)�C2.

Similar notation is used for sequences and sequences of functions.
Throughout,C,C1, C2, . . . denote positive constants independent ofn, x, t and polyno-

mialsP of degree at mostn. We writeC = C(�), C �= C(�) to indicate dependence on,
or independence of, a parameter�. The same symbol does not necessarily denote the same
constant in different occurrences.
Following is our class of weights:

Definition 1.1. LetW = e−Q whereQ : I → [0,∞) satisfies the following properties:
(a)

√
xQ′ (x) is continuous inI, with limit 0 at 0 andQ(0) = 0.

(b) Q′′ exists in(0, d), whileQ∗′′ is positive in
(
0,
√
d
)
.
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(c)

lim
x→d−Q(x) = ∞. (1.8)

(d) The function

T (x) := xQ′(x)
Q(x)

, x ∈ (0, d) (1.9)

is quasi-increasing in(0, d), with

T (x)�� > 1
2, x ∈ (0, d) . (1.10)

(e) There existsC1 > 0 such that∣∣Q′′(x)
∣∣

Q′(x)
�C1

Q′(x)
Q(x)

a.e.x ∈ (0, d) . (1.11)

Then we writeW ∈ L (C2
)
. If also there exists a compact subintervalJ of I ∗, and

C2 > 0 such that

Q∗′′(x)
|Q∗′(x)|�C2

|Q∗′(x)|
Q∗(x)

a.e.x ∈ I ∗\J, (1.12)

then we writeW ∈ L (C2+).
Remarks. (i)Note that theconditions (a) and (1.10) forceQ to becontinuousand increasing
in [0, d). Moreover, by our hypothesis (b),

0< Q∗′′ (u) = d

du

(
2uQ′ (u2)) , u ∈

(
0,
√
d
)
,

so uQ′ (u2) is strictly increasing in
(
0,
√
d
)
. Then

√
xQ′ (x) and xQ′ (x) are strictly

increasing in(0, d).
(ii) The simplest case of the above definition is whenI = [0,∞) and

C�T �� > 1
2 in (0,∞) .

Thus,

T ∼ 1 in (0,∞) .

This is the one-sided version of the Freud case, forT = O(1) forcesQ to be of at most
polynomial growth. Moreover,T is then automatically quasi-increasing in(0, d). Typical
examples then would be

Q(x) = Q�(x) = x�, x ∈ [0,∞)

where� > 1
2. For this choice, we see that

T (x) = �, x ∈ (0,∞).
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Note that for the case� = 1
2, which forms the boundary in the one-sided case between

determinate and indeterminate weights, there are added complications in the behavior of
the orthonormal polynomials and related quantities. For this phenomenon in the case of
even Freud weights, see,[4,18] for example. This explains our restriction (1.10), namely
T �� > 1

2, which forcesQ to grow at least as fast asx� � x1/2 if I is unbounded. For
suchQ, of polynomial growth, most of our results forpn,� follow from results of Kasuga
and Sakai [6]. They considered generalized Freud weights|x|2� exp(−2Q∗ (x)) onR.

(iii) A more general example satisfying the above conditions is

Q(x) = Qk,�(x) = expk(x
�)− expk(0), x ∈ [0,∞),

where� > 1
2 andk�0. Here we set

exp0 (x) := x

and fork�1,

expk (x) = exp(exp(exp· · ·exp(x)) · · ·)︸ ︷︷ ︸
k times

is thekth iterated exponential. In particular,

expk (x) = exp
(
expk−1 (x)

)
.

(iv) An example on the finite intervalI = [0, 1) is
Q(x) = Q(k,�)(x) = expk((1− x)−�)− expk(1), x ∈ [0, 1),

where� > 0 andk�0.
(v) The classesL (C2

)
,L (C2+) are formulated in such a way thatW ∗ belongs to the

corresponding classesF (C2
)
,F (C2+), the smallest and most explicit classes of weights

from [8]. ThenW ∗ also belongs to all the other classes used in [8], in particularF (Lip 1
2

)
,

and so we can apply the relevant results from there. We use the letterL to indicate that,
analogous to the Laguerre weights, we are working on (a subset of) the positive real axis.

Potential theory plays a fundamental role in analysis of exponential weights, and one of
the important quantities there is the Mhaskar–Rakhmanov–Saff numberat , [12,14, 20; 21,
Theorem 1.11, p. 201], defined fort > 0 as the positive root of the equation

t = 1

�

∫ 1

0

atuQ
′ (atu)√

u (1− u)
du. (1.13)

If xQ′ (x) is strictly increasing and continuous, with limits 0 and∞ at 0 andd respectively,
at is uniquely defined. Moreover,at is an increasing function oft ∈ (0,∞), with

lim
t→∞ at = d.

The interval

�t = [0, at ), t > 0, (1.14)
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plays a key role in analysis of weighted polynomials. For example,[13,14,21] theMhaskar–
Saff identity asserts that ifP is a polynomial of degree�n, then

‖Pe−Q‖L∞(I ) = ‖Pe−Q‖L∞[0,an) = ‖Pe−Q‖L∞(�n) (1.15)

andan is, asn →∞, the “smallest” number for which this holds.
One of our main results is:

Theorem 1.2. Let � > −1
2 and letW ∈ L (C2

)
. Let pn,� (x) be thenth orthonormal

polynomial for the weightW2
� . Then uniformly forn�1,

sup
x∈I

|pn,�(x)|W(x)
(
x + an

n2

)� ∣∣∣(x + ann
−2) (an − x)

∣∣∣1/4 ∼ 1. (1.16)

We shall prove this in Section 8. Let

�t = (tT (at ))
−2/3 , t > 0, (1.17)

and

	t (x) :=


√
x + at t−2 (a2t − x)

t
√
at − x + at�t

, x ∈ [0, at ] ,

	t (at ), x > at ,

	t (0) , x < 0.

(1.18)

For the Christoffel functions, we shall prove:

Theorem 1.3. Let� > −1
2 and letW ∈ L (C2

)
.

(a) LetL > 0.Then uniformly forn�1 andx ∈ [0, an (1+ L�n

)]
, we have

�n(W
2
� , x) ∼ 	n(x)W

2(x)
(
x + an

n2

)2�
. (1.19)

(b) Moreover,there existsC > 0 such that uniformly forn�1 andx ∈ I ,

�n(W
2
� , x)�C	n(x)W

2(x)
(
x + an

n2

)2�
. (1.20)

We shall prove this in Section 6. There we treat generalizedLp Christoffel functions in-
volving exponentials of potentials. For the zeros, we prove:

Theorem 1.4. Let� > −1
2 and letW ∈ L (C2

)
.

(a) There existsC > 0 such that forn�1 and1�j �n− 1,

xjn,� − xj+1,n,��C	n

(
xjn
)
. (1.21)

(b) For each fixedj andn, xjn,� is a non-decreasing function of�.
(c)

xnn,� ∼ ann
−2, (1.22)
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and

an
(
1− C�n

)
�x1n,� < an+�+ 1

4
. (1.23)

If in additionW ∈ L (C2+), then for large enoughn,
1− x1n,�

an
∼ �n. (1.24)

We shall prove this in Section 7. Finally, we note a restricted range inequality, which will
be proved in Section 5. In the sequel, we letPn denote the polynomials of degree�n.

Theorem 1.5. LetW ∈ L (C2
)
. Let0 < p�∞ andL, ��0. Let� > − 1

p
if p < ∞ and

��0 if p = ∞.
(a) There existC1, n0 > 0 such that forn�n0 andP ∈ Pn,

‖ (PW) (x) x�‖Lp(I)�C1‖ (PW) (x) x�‖Lp[Lann−2,an(1−��n)]. (1.25)

(b) Givenr > 1, there existC2, n0, � > 0 such that forn�n0 andP ∈ Pn,

‖ (PW) (x) x�‖Lp(arn,d)� exp
(−C2n

�) ‖ (PW) (x) x�‖Lp(�n). (1.26)

We note that all the above results are valid under weaker conditions onW . All we need is
thatW ∗ satisfies the conditions for the corresponding result in[8]. However, for simplicity,
we use just one class of weights in this paper. We note too that for the case whereQ is of
polynomial growthonI = [0,∞), Theorems1.2–1.5mostly follow fromTheorems1.1–1.4
of Kasuga and Sakai [6, p. 15].
This paper is organised as follows. In the next section, we relateL (C2

)
to a class of

weights from [8]. In Section 3, we state some technical estimates, most following from
results in [8]. In Section 4, we formulate some potential theoretic estimates. In Section 5,
we state and prove restricted range inequalities. In Section 6, we state and prove estimates
for Christoffel functions. In Section 7, we state and prove estimates for zeros of orthogonal
polynomials. Finally in Section 8, we state and prove our bounds for orthogonal polynomi-
als.
Finally, we illustrate some of the results above on specific weights. In this exercise, the

relation

Q(at ) ∼ tT (at )
−1/2 , (1.27)

which holds uniformly fort > 0, plays an essential role. This is proved in Lemma3.1.

Example 1. Let I = [0,∞), � > 1
2

Q(x) = Q�(x) = x�, x ∈ [0,∞).

Recall that for allx,

T (x) = �.
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In this special case (1.13) gives

at =
(√

�
� (�)

�
(
�+ 1

2

))1/�

t1/�.

We see that

�t = (�t)−2/3 , t > 0.

(I) The estimate for the largest zerox1n of pn(W
2, x) may be expressed as

1− x1n/an ∼ n−2/3,

which coincides with the usual relation for the largest zeros of Laguerre weights. The
spacing between the largest zeros has the form

(x1n− x2n) /n
1/� = O

(
n−2/3

)
.

(II) One may simplify	n of (1.18) a little:

	t (x) ∼ t
1
�−1
√

x + t1/�−2

at − x + t
1
�− 2

3

, x ∈ [0, at ].

(III) Theorem1.3 gives

�n

(
W2

� , x
)/

W2
� (x) ∼

√
xan

n2

1√
1− x

an
+ n−2/3

uniformly for x ∈
[
an
n2

, an

]
. From this we deduce that

�n

(
W2

� , x
)/

W2
� (x) ∼ an

n
∼ n

1
�−1 ,

uniformly for x ∈ [�an, εan] and for any fixed 0< � < ε < 1. Moreover, one can
deduce that

inf
x�an/n2

�n

(
W2

� , x
)/

W2
� (x) ∼ an

n2
∼ n

1
�−2 .

Example 2. Let I = [0,∞), k�1 and� > 1
2. Let,

Q(x) = Qk,�(x) = expk(x
�)− expk(0), x ∈ [0,∞).

We also need thej th iterated logarithm: let log0 (x) := x and forj �1,

logj (x) = log(log(log· · · log(x)))︸ ︷︷ ︸
j times

, x > expj−1 (0) .
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In this example, uniformly forx�1,

T (x) ∼ x�
k−1∏
j=1

expj
(
x�) .

Clearly then, givenε > 0, T (an) grows slower than(logQ(an))
1+ε asn → ∞. It also

grows faster than logQ(an). Then (1.27) can be used to show that

expk−1
(
a�
n

) = logn− 1
2 (log logn) (1+ o (1)) ,

and in particular, asn →∞,

an =
(
logk n

)1/�
(1+ o (1)) .

Moreover

T (an) ∼
k∏

j=1
logj n

and

�n ∼
n

k∏
j=1

logj n

−2/3 .
(I) For the largest zerox1n of pn

(
W2, x

)
:

1− x1n/an ∼
n

k∏
j=1

logj n

−2/3 ;
and for the spacing of the zeros

(x1n− x2n) /
(
logk n

)1/� = O


n

k∏
j=1

logj n

−2/3
 .

For the smallest zero,

xnn ∼
(
logk n

)1/�
n−2.

(II) For the Christoffel functions, we have forn� expk (1),

max
x∈[0,∞)

�−1n

(
W2, x

)
W2 (x) ∼ n2

(
logk n

)−1/�
.

Moreover, given 0< � < 1, we have forn� expk (1),

min
x∈[0,a�n]

�−1n

(
W2, x

)
W2 (x) ∼ n

(
logk n

)−1/�
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and

max
x∈[a�n,∞)

�−1n

(
W2, x

)
W2 (x) ∼ n(

logk n
)1/�

 k∏
j=1

logj n

1/2

.

Example 3. Let I = [0, 1), � > 0, and

Q(x) = (1− x)−� − 1, x ∈ [0, 1).
Here

T (x) ∼ 1

1− x
, x ∈

[
1

2
, 1

]
.

A feature of this example, is thatT (x)may grow faster thanQ(x) asx → 1−. This occurs
if � < 1. From (1.27),

1− an ∼ n
−
(

1
�+ 1

2

)

and hence

T (an) ∼ n

1
�+ 1

2 .

Moreover,

�n ∼ n
− 2

3

(
2�+3
2�+1

)
.

(I) For the largest zerox1n of pn

(
W2, x

) :
1− x1n/an ∼ n

− 2
3

(
2�+3
2�+1

)
;

and for the spacing of the zeros

x1n− x2n = O

(
n
− 2

3

(
2�+3
2�+1

))
.

(II) For the Christoffel functions, we have forn�1,

max
x∈[0,1] �

−1
n

(
W2, x

)
W2 (x) ∼ n2

and there existsK > 0 such that forn�1 andx ∈
[
n−2, 1−Kn

− 1
�+ 1

2

]
,

�−1n

(
W2, x

)
W2 (x) ∼ n√

x (1− x)
.
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Example 4. Let I = [0, 1) andk�1 and� > 0. Let

Q(x) = Q(k,�)(x) = expk((1− x)−�)− expk(1), x ∈ [0, 1).
Here asn →∞

1− an =
(
logk n

)−1/�
(1+ o (1))

and

T (an) ∼
(
logk n

)1+1/� k−1∏
j=1

logj n.

Moreover,

�n ∼
n
(
logk n

)1+1/� k−1∏
j=1

logj n

−2/3 .
(I) For the largest zerox1n of pn

(
W2, x

)
:

1− x1n/an ∼
n
(
logk n

)1+1/� k−1∏
j=1

logj n

−2/3

and for the spacing of the zeros

x1n− x2n = O


n
(
logk n

)1+1/� k−1∏
j=1

logj n

−2/3
 .

For the smallest zero, we have

xnn ∼ n−2.

(II) For the Christoffel functions, we have forn�1,

max
x∈[0,1] �

−1
n

(
W2, x

)
W2 (x) ∼ n2.

Moreover, given 0< � < 1, we have forn� expk (1),

max
x∈[a�n,1

] �−1n

(
W2, x

)
W2 (x) ∼ n

(logk n)1+1/� k−1∏
j=1

logj n

1/2

and there existsK > 0 such that forn�1 andx ∈
[
n−2, 1−K

(
logk n

)− 1
�

]
,

�−1n

(
W2, x

)
W2 (x) ∼ n√

x (1− x)
.
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2. Classes of weightsW andW ∗

The classL (C2
)
was defined in such a way thatW ∗ becomes part of the correspond-

ing class in[8, p. 7], namely the classF (C2
)
: In the formulation below, there are some

simplifications, due to the fact thatW ∗ is even.

Definition 2.1. Let W ∗ = e−Q∗
whereQ∗ : I ∗ → [0,∞) satisfies the following

properties:
(a) Q∗′ is continuous inI ∗ andQ∗(0) = 0.
(b) Q∗′′ exists and is positive inI ∗\{0}.
(c)

lim
x→√

d−
Q∗(x) = ∞.

(d) The function

T ∗(x) := xQ∗′(x)
Q∗(x)

, (2.1)

is quasi-increasing in(0,
√
d), with

T ∗(x)��∗ > 1, x ∈ I ∗\{0}. (2.2)

(e) There existsC1 > 0 such that

Q∗′′(x)
|Q∗′(x)|�C1

|Q∗′(x)|
Q∗(x)

a.e.x ∈ I ∗\{0}. (2.3)

Then we writeW ∗ ∈ F (C2
)
. If also there exists a compact subintervalJ of the open

intervalI ∗, andC2 > 0 such that

Q∗′′(x)
|Q∗′(x)|�C2

|Q∗′(x)|
Q∗(x)

a.e.x ∈ I ∗\J, (2.4)

then we writeW ∗ ∈ F (C2+).
Lemma 2.2.

(I)

W ∈ L
(
C2
)
⇔ W ∗ ∈ F

(
C2
)
.

(II)

W ∈ L
(
C2+

)
⇔ W ∗ ∈ F

(
C2+

)
.

Proof. (I) We first show that

W ∈ L
(
C2
)
⇒ W ∗ ∈ F

(
C2
)
.
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NowQ∗′ (x) = 2Q′ (x2) x is continuous inI ∗\ {0} and by hypothesis (a) in Definition1.1
has limit 0 at 0, so is continuous inI∗. So (a) in Definition 2.1 is satisfied. We see that
(b)–(d) in Definition 2.1 follow directly from those in Definition 1.1, if we set�∗ := 2�
and observe that

T ∗ (x) = 2T
(
x2
)

�2� = �∗, x ∈ I ∗\ {0} . (2.5)

Finally, for x ∈
(
0,
√
d
)
, (1.10) and (1.11) give

0 <
Q∗′′(x)
Q∗′(x)

= 1

x
+ 2

Q′′ (x2)
Q′ (x2) x

�
T
(
x2
)

�x
+ 2C1

Q′(x2)
Q(x2)

x

= Q∗′ (x)
Q∗ (x)

[
1

2�
+ C1

]
,

so (2.3) in Definition 2.1 is satisfied. ThusW ∗ ∈ F (C2
)
.

Conversely, suppose thatW ∗ ∈ F (C2
)
. We shall check that (e) of Definition 1.1 holds

for W . The remaining properties follow directly. Using (2.2) and (2.3) of Definition 2.1,
and then (2.5),

2

∣∣∣∣∣x2Q′′ (x2)
Q′ (x2)

∣∣∣∣∣ =
∣∣∣∣xQ∗′′(x)
Q∗′(x)

− 1

∣∣∣∣
� Cx

Q∗′ (x)
Q∗ (x)

+ T ∗ (x)
�∗

= 2

(
C + 1

�∗
)

x2Q′ (x2)
Q
(
x2
) .

Then (1.11) of Definition 1.1 follows.
(II) This follows from (I) as (1.12) in Definition 1.1 is the same as (2.4) in Definition 2.1.

�

In the sequel, we shall denote the positive Mhaskar–Rakhmanov–Saff number for the
weightW ∗ by a∗t , t > 0. Thusa∗t is defined by

t = 1

�

∫ a∗t

−a∗t

xQ∗′(x)√
a∗2t − x2

dx = 2

�

∫ 1

0

a∗t uQ∗′ (a∗t u)√
1− u2

du.

In terms ofQ, we see that this becomes (after substitutingu = √
v),

t

2
= 1

�

∫ 1

0

a∗2t vQ′ (a∗2t v
)

√
v (1− v)

dv.

Recall too from remark (i) after Definition1.1, thatxQ′ (x) is a strictly increasing function
of x ∈ (0, d), so these equations and (1.13) uniquely defineat anda∗t . Then the above give

at/2 = a∗2t . (2.6)
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We shall also use the quantity

�t = (tT (at ))
−2/3 , (2.7)

and its analogue forQ∗

�∗t =
{
tT ∗

(
a∗t
)}−2/3

. (2.8)

We see from (2.5) that

�∗2t = {4tT (at )}−2/3 = 4−2/3�t . (2.9)

3. Technical estimates

In this section, we record a number of technical estimates forQ andat . Throughout we
assume thatW ∈ L (C2

)
.

Lemma 3.1. (a)Uniformly for t > 0,we have

Q′(at ) ∼ t

at

√
T (at ), (3.1)

Q(at ) ∼ t√
T (at )

. (3.2)

(b)Uniformly for t�r > 0,

1� at

ar
�C

(
t

r

)1/�

. (3.3)

In particular for fixedL > 1 and uniformly fort > 0,

aLt ∼ at . (3.4)

(c) Fix L > 0.Then uniformly fort > 0,

Q(j)(aLt ) ∼ Q(j)(at ), j = 0, 1. (3.5)

Moreover,

T (aLt ) ∼ T (at ) and �Lt ∼ �t . (3.6)

(d) For someε > 0,and for large enought ,

T (at )�Ct2−ε (3.7)

and

�t T (at )�Ct−ε = o(1). (3.8)
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Proof. (a) Recall thatQ∗ is even, and thatat =
(
a∗2t
)2. Lemma 3.4 in[8, p. 69] gives

Q∗′ (a∗2t) ∼ t

a∗2t

√
T ∗
(
a∗2t
)
.

(Note that in the notation of[8], �∗t = a∗t becauseQ∗ is even.) Then the relationship between
Q andQ∗ andT andT ∗ gives (3.1). Relation (3.2) now follows from the identity

Q(x) = xQ′ (x) /T (x) .

(b) From Lemma 3.5(c) in[8, p. 72], we have as�∗2t = a∗2t in the even case,

1� a∗2t
a∗2r

�C

(
t

r

)1/�∗

for t > r > 0. As�∗ = 2�, the result follows.
(c) This follows similarly from Lemma 3.5(b) in[8, p. 72] and the relations between

Q,Q∗, T , T ∗.
(d) These follow similarly from Lemma 3.7 in [8, p. 76] and from (2.9).�

Some further estimates involvingat :

Lemma 3.2. (a)Uniformly for t > 0,∣∣∣∣1− at

as

∣∣∣∣ ∼ 1

T (at )

∣∣∣∣1− t

s

∣∣∣∣ , 1

2
� s

t
�2. (3.9)

(b)Given fixedL > 1,we have uniformly fort > 0,∣∣∣∣1− aLt

at

∣∣∣∣ ∼ 1

T (at )
. (3.10)

Proof. These follow from Lemma 3.11 in[8, p. 81] and the identities relatingT , T ∗, at , a∗t .
�

Lemma 3.3. (a)Uniformly for t > 0 and forx ∈ [0, at ),

Q′(x)
√
x� Ct√

at − x
. (3.11)

(b) Fix L > 0.Then uniformly fort > 0 andx ∈ [Lat t
−2, at ],

at

t2
Q′ (x)

(
1− x

at

)
�C

/√
T (at )�C1 . (3.12)

Proof. (a) From Lemma 3.8(a) in[8, p. 77], for someC �= C (t, y),

Q∗′ (y) � Ct√
a∗2t
(
a∗2t − y

) ,
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for y ∈ [0, a∗2t ) = [0,√at ). Settingy = √
x gives

Q′ (x)
√
x � Ct√√

at
(√

at −√
x
)

=
Ct

(√√
at +√

x

)
√√

at (at − x)

� Ct√
at − x

.

(b) By Lemma 3.8(b) in[8, p. 77], fory ∈ [0, a∗2t ),

a∗2t
t

Q∗′ (y)
(
1− y

a∗2t

)
�C

/√
T ∗
(
a∗2t
)
.

Settingy = √
x gives

√
at

t

√
xQ′ (x)

(
1−

√
x

at

)
�C

/√
T (at ) .

Multiplying by
√
at

t
√
x

(
1+

√
x
at

)
gives

at

t2
Q′ (x)

(
1− x

at

)
� C

t

√
at

xT (at )
� C√

T (at )
,

providedx�Lat t
−2, some fixedL > 0. �

4. Potential theory

Let us assume that the function
√
xQ′ (x) is increasing inI , with limit 0 at 0 and limit

∞ atd. Because of the identity

Q∗′′ (u) = d

du

(
2uQ′ (u2)) ,

this is essentially equivalent toQ∗ being convex onI ∗. We recall[8, p. 37; 21, p. 27], that,
givent > 0, there is a unique positive measure
t of total masst , and a unique constantct ,
such that

V 
t (x)+Q(x)

{= ct , x ∈ S
(

t

)
,

> ct , x ∈ I\S (
t

)
,

(4.1)
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whereS
(

t

)
denotes the support of the measure
t , and

V 
t (x) =
∫

log
1

|x − s| d
t (s)

is the corresponding logarithmic potential. This measure
t is the equilibrium measure for
the external fieldQ. In this section, we relate
t to the corresponding measure
∗t for Q∗,
and hence establish some basic results about
t .
Givent > 0, we let
∗t denote the equilibrium measure forQ∗ so that

V 
∗t (x)+Q∗ (x)
{= c∗t , x ∈ S

(

∗t
)
,

> c∗t , x ∈ I ∗\S (
∗t ) . (4.2)

We let�t and�∗t denote the densities for
t and

∗
t , respectively, whenever they exist. Under

mild conditions onQ or Q∗, which are satisfied for the classL (C2
)
, there is a simple

relationship between the supportsS
(

∗t
)
, S
(

t

)
, the densities�∗t ,�t , and the associated

potentials:

Theorem 4.1. Let
√
xQ′ (x) be increasing inI ,with limit 0 at 0 and limit∞ at d.Assume

moreover,that

0= Q(0) < Q (x) , x ∈ (0, d) . (4.3)

Let t > 0.
(a) 
t is absolutely continuous with respect to Lebesguemeasure and its density�t is given

by

�t (x) = 1

2
√
x
�∗2t
(√

x
)
, x ∈

(
0,
(
a∗2t
)2)

, (4.4)

where�∗2t is the density of the equilibrium measure
∗2t for Q∗.
(b) Moreover,

V 
t

(
z2
)
= V 
∗2t (z) , z ∈ C, (4.5)

at =
(
a∗2t
)2

, (4.6)

ct = c∗2t =
∫ t

0
log

4

as
ds. (4.7)

Proof. Let� denote themeasure on
(
0,
(
a∗2t
)2)with density given by the right-hand side of

(4.4).We shall show that� has mass tand satisfies (4.1) with some constantct . Uniqueness
of the equilibrium measure then gives the result. First recall thatQ∗ is even, so that its
equilibrium density is also even. Moreover the hypotheses above onQ imply thatQ∗
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satisfies the hypotheses of Theorem 2.4 in[8, pp. 40–41]. Now∫ a∗22t

0
d�=

∫ a∗22t

0

1

2
√
x
�∗2t
(√

x
)
dx =

∫ a∗2t

0
�∗2t (s) ds

= 1

2

∫ a∗2t

−a∗2t
�∗2t (s) ds = t.

Next,

V 
∗2t (z) =
∫ a∗2t

−a∗2t
log

1

|z− s|�
∗
2t (s) ds =

∫ a∗2t

−a∗2t
log

1

|z+ s|�
∗
2t (s) ds

by evenness of�∗2t . Therefore,

V 
∗2t (z)= 1

2

∫ a∗2t

−a∗2t
log

1∣∣z2− s2
∣∣�∗2t (s) ds

=
∫ a∗22t

0
log

1∣∣z2− y
∣∣�∗2t (√y

) dy

2
√
y

= V �
(
z2
)
.

Next, letx ∈
[
0,
(
a∗2t
)2] and writex = y2, wherey ∈ [0, a∗2t ]. Then

V � (x)+Q(x)= V �
(
y2
)
+Q

(
y2
)

= V 
∗2t (y)+Q∗ (y)

= c∗2t ,
by the equilibrium relation (4.2) forQ∗. Similarly

V � +Q > c∗2t in
((

a∗2t
)2

, d
)
.

Uniqueness of the equilibrium measure shows that

� = 
t

and that (4.1) holds. We proved (4.6) at the end of Section 2, see (2.6). Finally, from
uniqueness ofct followed by (2.34) in [8, p. 46],

ct = c∗2t

=
∫ 2t

0
log

2

a∗
d

=
∫ 2t

0
log

2√
a/2

d

=
∫ t

0
log

4

as
ds. �
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Next, we state a formula for, and an estimate of, the density�t (x):

Theorem 4.2. LetW ∈ L (C2
)
.

(a) For x ∈ [0, at ],

�t (x) = 1

�2

√
at − x

x

∫ at

0

uQ′(u)− xQ′(x)
u− x

du√
u (at − u)

. (4.8)

(b) Uniformly for t > 0,

�t (x) ∼ t
√
at − x√

x(a2t − x)
, x ∈ (0, at ) . (4.9)

Proof. (a) From (5.23) in[8, p. 116],

�∗2t (y) =
√
a∗22t − y2

�2

∫ a∗2t

−a∗2t

Q∗′(s)−Q∗′(y)
s − y

ds√
a∗22t − s2

.

Using (4.4),Q∗′(s) = 2sQ′(s2) and some elementary manipulations, we obtain (4.8).
(b) Recall from Lemma 2.2 that

W ∈ L
(
C2
)
⇔ W ∗ ∈ F

(
C2
)
.

Then we may apply Theorem 5.3 in[8, p. 111]: uniformly int andy,

�∗2t (y) ∼
t

√
a∗22t − y2

a∗24t − y2
, y ∈ [0, a∗2t ).

Then (4.4) gives the result.�

Recall that we defined	t at (1.18). Theorem 4.2(b) shows that	t is asymptotically, up
to a constant multiple, the reciprocal of�t . More precisely, if�, ε > 0 are fixed then for
t > 0,

	t (x) ∼ �−1t (x) , x ∈
[
�at t−2, at

(
1− ε�t

)]
. (4.10)

The following lemma involving	t will be useful:

Lemma 4.3. LetW ∈ L (C2
)
. GivenA,B ∈ R with A < B, there existM > 0, t0 > 0

such that

�t

(
x + ��−1t (x)

)
∼ �t (x) , x ∈

[
Mat t

−2, at
(
1−M�t

)]
, (4.11)

and

	t

(
x + �	t (x)

) ∼ 	t (x) , x ∈ I, (4.12)
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uniformly for� ∈ [A,B], t� t0, and forx in the above intervals. Conversely,givenM > 0,
there existt0, ε > 0 such that(4.11)and(4.12)hold provided

∣∣�∣∣ �ε andt� t0.

Proof. (I) We prove the second statement (4.12). Then (4.11) follows from (4.10) and
(4.12). In view of definition (1.18) of	t , we need to show that for the givenA,B and
� ∈ [A,B], there existsM > 0 such that forx ∈ [Mat t

−2, at
(
1−M�t

)]
,

x + at t
−2∼ (x + �	t (x)

)+ at t
−2, (4.13)

a2t − x ∼ a2t −
(
x + �	t (x)

)
, (4.14)

at − x + at�t ∼ at −
(
x + �	t (x)

)+ at�t . (4.15)

We do the first and third of these; the second is easier than the third, becausea2t is larger
thanat + at�t for larget . These will imply (4.12) forx ∈ [Mat t

−2, at (1−M�t )]. In the
remainder of[0, at ], (and henceI ) (4.12) follows since the factors in the left-hand side of
(4.13)–(4.15) do not change much. Let

D = max{|A| , |B|} .

Proof of (4.13). If first x ∈ [Mat t
−2, at/2

]
, then from (1.18),∣∣�∣∣	t (x)

x + at t−2
� D (a2t − x)

t
√
x + at t−2

√
at − x + at�t

� C

t

(a2t − at )+ (at − x)√
x
√
at − x

� C

t

1√
Mat t−2

[
a2t − at√
at − at/2

+√at − x

]
. (4.16)

We continue this using (3.10), (3.4) and (3.6) as

� C√
atM

[√
at

T (at )
+√

at

]
� C√

M
.

Next, if x ∈ [at/2, at
(
1−M�t

)], (4.16) gives∣∣�∣∣	t (x)

x + at t−2
�

D
(
a2t − at/2

)
t
√
at/2

√
at�t

� C

tT (at )
√

�t

= C�t = O
(
t−2/3

)
,

by (3.10) again, and by (2.7). Together the above estimates show that ift is large enough
andM is large enough, we have∣∣�∣∣	t (x)

x + at t−2
� 1

2

for the specified range ofx, t, �. So we have (4.13).
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Proof of (4.15). Now for x ∈ [Mat t
−2, at

(
1−M�t

)]
,∣∣∣∣∣1− at −

(
x + �	t (x)

)+ at�t

at − x + at�t

∣∣∣∣∣
=

∣∣�∣∣	t (x)

at − x + at�t

� D
√
x + at t−2 (a2t − x)

t
(
at − x + at�t

)3/2
�C

√
at

t

a2t − at + at − x

(at − x)3/2

�C

√
at

t

(
at

T (at )
[
Mat�t

]3/2 + 1√
Mat�t

)
,

by (3.10) and asx�at
(
1−M�t

)
. We continue this, using the definition of�t , as

�C

(
1

M3/2 +
1

M1/2

(
T (at )

t2

)1/3
)

� C

M1/2,

by (3.7). SinceC is independent ofM, we obtain, ifM is large enough,∣∣∣∣∣1− at −
(
x + �	t (x)

)+ at�t

at − x + at�t

∣∣∣∣∣ � 1

2

for the specified range ofx, t, �. So we have (4.15).
The converse part of the lemma follows similarly.�

Lemma 4.4. LetM > 0.There existst0 such that uniformly fort� t0 andx ∈ I ,

	t+M (x) ∼ 	t (x) . (4.17)

Proof. This follows easily from (3.9) and the definition of	t . �

5. Restricted range inequalities

For t�0, we denote byPt the set of all functions of the form

P(z) = c exp

(∫
log |z− �|d�(�)

)
, (5.1)

where��0, � (C) � t , c�0, and the support of� is compact. These are the exponentials
of potentials of mass� t . In particular if t�n, thenP ∈ Pn ⇒ |P | ∈ Pt . Note too that
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for P ∈ Pt , we have P
(
z2
) ∈ P2t . Recall also the notation

�t = [0, at ].
In this section, we presentLp analogues of the Mhaskar–Saff inequality for the classPt .

Theorem 5.1. LetW := e−Q whereQ : I → [0,∞) is such thatQ∗ (x) = Q
(
x2
)
is

convex inI ∗. Assume moreover thatQ(d−) = ∞ andQ(x) > 0 = Q(0), x ∈ I\{0}. Let
0< p < ∞ and� > − 1

p
. LetP ∈ Pt−�− 3

2p
\ {0}. Then

‖ (PW) (x) x�‖Lp(I\�t ) < ‖ (PW) (x) x�‖Lp(�t ), (5.2)

and

‖ (PW) (x) x�‖Lp(I) < 21/p‖ (PW) (x) x�‖Lp(�t ). (5.3)

In particular this holds for not-identically vanishing polynomialsP of degree� t−�− 3
2p .

For p = ∞, (5.2)and(5.3) remain valid with< replaced by� , provided��0.

Under additional assumptions, we can improve the above result, and “go back" into the
interval�t , giving a Schur-type inequality. Recall the numbers

�t = {tT (at )}−2/3, t > 0,

which are small for larget . Theorem 1.5 is a special case of:

Theorem 5.2. LetW ∈ L (C2
)
. Let0 < p�∞ andL, ��0. Let� > − 1

p
if p < ∞ and

��0 if p = ∞.
(a) There existC1, t0 such that fort� t0 andP ∈ Pt ,

‖ (PW) (x) x�‖Lp(I)�C1‖ (PW) (x) x�‖Lp[Lat t−2,at (1−��t )]. (5.4)

(b) For t,� > 0,define

H(�, t) := min{�, T (at )
−1}

�t

. (5.5)

There existC2, C3 independent oft,�, P with the following properties:for t > 0 and
P ∈ Pt ,

‖ (PW) (x) x�‖Lp(at (1+�),d)

�C2 exp(−C3H(�, t)3/2)‖ (PW) (x) x�‖Lp(�t ). (5.6)

Furthermore,givenr > 1,we have for somet0, � > 0 andt� t0,

‖ (PW) (x) x�‖Lp(art ,d)� exp
(−Ct�

) ‖ (PW) (x) x�‖Lp(�t ). (5.7)
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We note that the conditions onW may be relaxed; all we need is thatW ∗ satisfy the
hypotheses of Theorem 4.2 in[8, p. 96]. We begin with a Lemma which is similar to
Lemma 4.4 in [8, p. 99ff.]. Recall that the Green’s function forC\ [a, b] with pole at∞ is

g[a,b] (z) = log

∣∣∣∣ 2

b − a

(
z− a + b

2

)
+ 2

b − a

√
(z− a) (z− b)

∣∣∣∣ .
It is harmonic inC\ [a, b], equal to 0 on[a, b], and behaves like log|z|+O (1) asz →∞.

Lemma 5.3. Let � = [a, b] � 0 and0 < p�∞. Let � > − 1
p
if p < ∞ and��0 if

p = ∞. Let��0, c ∈ C, and� be a non-negative Borel measure with compact support
and total mass��. Let

P(z) := c exp

(∫
log |z− y|d�(y)

)
.

Let� ∈ R andU be a function harmonic inC\� with

U (z) = � log |z| + o (1) , z →∞. (5.8)

Assume moreover,that on�, U has boundary valuesU± from the upper and lower half
plane that satisfy

U+ = U = U−,

whereeU ∈ Lp

(
�
)
. Letg� denote the Green’s function forC\�. Then

‖P (x) e
U(x)−(�+�+ 2

p
+max{0,�})g�(x) |x|� ‖Lp(R\�)

�C

∥∥∥(PeU
)
(x) |x|�

∥∥∥
Lp(�)

. (5.9)

HereC = C (�) only. If��0,we can takeC = 1.

Proof. We assumep < ∞. (The casep = ∞ follows by lettingp → ∞.) The proof is
similar to Lemma 4.4 in[8, p. 99ff.]. We note that it suffices to prove this with� having
total mass�. For,g��0, so the left-hand side of (5.9) decreases as we increase�. Thus
we assume� has total mass�. We may also clearly assumec = 1.

Let g�(z, x) denote the Green’s function for the exterior of an interval� with pole atx.
In the special casex = ∞, we have already used the notationg�(x) = g�(x,∞). In the
casex ∈ �, we just set g�(z, x) ≡ 0. Now assumex /∈ �. The Green’s functiong�(z, x)

has the following properties:
(i) g�(z, x)+ log |z− x| is harmonic (as a function ofz) in C\�;
(ii) g�(z, x) = 0, z ∈ � andg�(z, x)�0 onC.
Define the function

�(z) :=
∫
{log |z− x| + g�(z, x)} d�(x)

+U(z)− (�+ �) g�(z)+ � (log |z| + g� (z, 0)− g� (z))

=:�1(z)+ U(z)− (�+ �) g�(z)+ � (log |z| + g� (z, 0)− g� (z)) .
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Now (as in[8, pp. 99–100])�1 is harmonic inC\� and

�1 (z) = � log |z| +
∫

g�(∞, x) d�(x)+ o (1) , z →∞.

Next,U − (�+ �) g� is harmonic inC \�, and behaves like

−� log |z| + Constant+ o (1) , z →∞.

Finally, � (log |z| + g� (z, 0)− g� (z)) is harmonic inC\� and has a finite limit at∞. It
follows that� is harmonic inC\�, for it has a finite limit at∞. Hence it has a single-valued
harmonic conjugatẽ�(z) there. Then the function

f (z) := exp(�(z)+ i�̃(z))

is analytic and single-valued inC\� and has no zeros there, so we may define a single-
valued branch off p/2(z) in C\�. Let g̃�(z) denote the harmonic conjugate ofg�(z) in
C\� so that

A(z) := exp(g�(z)+ ig̃�(z))

is analytic there except for a simple pole at∞.
Now let us look at the boundary values f± of f . In (a, b), we have

|f± (x)| = exp(�± (x)) = |P | (x) eU(x) |x|� . (5.10)

Moreover inR\�,
|f (x)| = |P | (x) eU(x) |x|� eh(x), (5.11)

where

h (x) =
∫

g� (x, y) d� (y)− (�+ �) g� (x)+ � {g� (x, 0)− g� (x)} . (5.12)

Now we consider two subcases.
CaseI: ��0

Since��0 andg��0, we see that

h (x) � − (�+ �+ �) g� (x) . (5.13)

Next, we apply Lemma 4.3 in[8, p. 98] (withp = 2) to the functionf p/2/A, which is
analytic inC\�, obtaining

‖f p/2/A‖L2(R\�)�
1

2

{
‖f p/2

+ /A+‖L2(�) + ‖f p/2
− /A−‖L2(�)

}
. (5.14)

Then (5.10)–(5.13) and the fact that|A±| = 1 in� while |A| = exp(g�) in the rest of the
real line give (5.9) withC = 1.
CaseII: − 1

p
< � < 0

We use� above, but with� = 0, so that in�,

|f± (x)| = exp(�± (x)) = |P | (x) eU(x). (5.15)
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Moreover inR\�, (5.11) holds with� = 0 and with

h (x) =
∫

g� (z, x) d� (x)− (�+ �) g� (x) . (5.16)

As above, we may choose a single-valued branch off p/2/A in C\�. Since this function
vanishes at∞, Cauchy’s integral formula gives(

f p/2/A
)
(z) = 1

2�i

∫ b

a

(
f p/2/A

)
+ (x)− (f p/2/A

)
− (x)

t − z
dt,

z /∈ �. We may rewrite this as(
f p/2/A

)
(z) = 1

2

(
H

[(
f p/2/A

)
+

]
(z)−H

[(
f p/2/A

)
−

]
(z)

)
,

whereH denotes the Hilbert transform, and we use the convention that
(
f p/2/A

)
± is 0

outside�. Then wemay apply the weighted inequality for the Hilbert transform[5, p. 255],
[15, p. 440],

‖H [F ] (x) |x|� ‖L2(R)�C‖F (x) |x|� ‖L2(R),

valid if � ∈ (−1
2,

1
2

)
and provided the right-hand side is finite. ChoosingF = (f p/2/A

)
±

and� = �p
2 ∈ (−1

2, 0
)
gives∫

R\�

∣∣∣f p/2/A

∣∣∣2 (x) |x|�p dx

�C

[∫
�

∣∣∣∣(f p/2/A
)
+

∣∣∣∣2 (x) |x|�p dx +
∫
�

∣∣∣∣(f p/2/A
)
−

∣∣∣∣2 (x) |x|�p dx

]

�2C
∫
�

∣∣∣PeU
∣∣∣p (x) |x|�p dx,

by (5.15). Finally (5.11), (5.16) and the fact that in this case

h (x) � − (�+ �) g� (x) , x /∈ �,

give the result. �

Proof of Theorem 5.1. We do this in 2 steps.
Step1. Apply Lemma 5.3 to the weightW ∗: We apply Lemma 5.3 with� = 0 there,

with � = �∗2t =
[−a∗2t , a∗2t

]
, and with

U (z) = V 
∗2t (z)+ 2� log |z| .
Then

U (z) = (2�− 2t
)
log |z| + o (1) , z →∞,
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so (5.8) holds with� = 2�− 2t . Also, by (4.2),

U (x)=−Q∗ (x)+ c∗2t + 2� log |x| , x ∈ �∗2t ;
U (x) >−Q∗ (x)+ c∗2t + 2� log |x| , x ∈ I ∗\�∗2t .

Then (5.9) implies (recall thatC = 1 as we use Lemma 5.3 with� = 0),

‖ (RW ∗) (x) |x|2� e
−
(
�+2�−2t+ 2

p

)
g�∗2t (x)‖Lp(I\�∗2t )

< ‖ (RW ∗) (x) |x|2� ‖Lp(�
∗
2t )

,

providedR ∈ P�. In particular, asg�∗2t > 0 outside�∗2t , we obtain

‖ (RW ∗) (x) |x|2� ‖Lp(I\�∗2t ) < ‖ (RW ∗) (x) |x|2� ‖Lp(�
∗
2t )

, (5.17)

provided

��2t − 2�− 2

p
.

Step2. Transfer estimates toW : Let P ∈ Pt−�− 3
2p
\ {0}, and

R (y) = P
(
y2
)
|y|1/p ∈ P2t−2�− 2

p
.

SinceRW ∗ is even, (5.17) gives

2
∫ √

d

a∗2t

(
RW ∗)p (y) y2p�dy < 2

∫ a∗2t

0

(
RW ∗)p (y) y2p� dy.

The substitutionx = y2 and the fact thata∗2t =
√
at gives (5.2). Then (5.3) also follows.

�

We begin the proof of Theorem 5.2 with

Lemma 5.4. LetW ∈ L (C2
)
. Let0< p�∞ and��0.Let� > − 1

p
if p < ∞ and��0

if p = ∞. There existC1, t0 such that fort� t0 andP ∈ Pt ,

‖ (PW) (x) x�‖Lp(I)�C1‖ (PW) (x) x�‖Lp[0,at (1−��t )]. (5.18)

Proof. Let

 = t + �+ 1

2p
,

and

R (y) = P
(
y2
)
y
2�+ 1

p ∈ P2,

so we can apply Theorem 4.2(a) in[8, p. 96] to deduce that for large enought ,

‖RW ∗‖Lp(I∗)�C‖RW ∗‖Lp(−a∗2(1−��∗2),a∗2(1−��∗2)).
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HereC is independent ofR, t, . On making the substitutionsx = y2 in the integrals in the
norms, and usinga∗2 =

√
a, we obtain

‖ (PW) (x) x�‖Lp(I)�C‖ (PW) (x) x�‖
Lp

[
0,a(1−��∗2)

2
].

Here in view of (2.9),(
1− ��∗2

)2 = 1− 2−1/3�� + o
(
�
)
.

Moreover, by (3.9),

a/at = 1+O

(
1

tT (at )

)
= 1+ o

(
�t

)
,

while by (3.6),� ∼ �t . Then (5.18) follows for large enought , if we change� a little. �

Lemma 5.5. LetW ∈ L (C2
)
. Let 0 < p�∞ andL, ��0. Let � > − 1

p
if p < ∞ and

��0 if p = ∞. There existC1, t0 > 0 such that fort� t0 andP ∈ Pt ,

‖ (PW) (x) x�‖Lp[0,Lat t−2]�C1‖ (PW) (x) x�‖Lp[Lat t−2,at (1−��t )]. (5.19)

Proof. Let us write for large enought ,

at
(
1− ��t

) = a and J =
[
Lat t

−2, a

]
.

In view of (3.9), we see that

��t = 1− a

at
∼ 1

T (at )

(
1− 

t

)
whence

t −  ∼ �t tT (at ) = (tT (at ))
1/3 = o (t) . (5.20)

(Recall (3.7).) Let4 denote the linear map ofJ onto� = [0, a] so that

4 (z) =
(
z− Lat t

−2) 1− ��t

1− ��t − Lt−2
.

Let

v (z) := V 
 (4 (z)) , z ∈ C.

Then the equilibrium condition (4.1) forV 
 yields

v (x)+Q(4 (x)) = c, x ∈ J. (5.21)

We claim that

0�Q(x)−Q(4 (x)) �C, x ∈ J. (5.22)
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Indeed the left inequality follows asQis increasing, and as 4(x) �x. We proceed to prove
the right-hand one. Forx ∈ J , we have for some� betweenx and4 (x),

Q(x)−Q(4 (x))=Q′ (�) (x − 4 (x))

=Q′(�)Lt−2
at
(
1− ��t

)− x

1− ��t − Lt−2
.

Herex���4 (x), so we can continue this as

Q(x)−Q(4 (x)) �
Q′(�)

(
at − �

)
Lt−2

1− ��t − Lt−2
�C,

by (3.12). Here we needt large enough, as4 (x) ∈ J , andC is independent ofx, t . So we
have (5.22). Then we may recast (5.21) as

|v (x)+Q(x)− c| �C, x ∈ J. (5.23)

Next,v is harmonic outsideJ , and

v (z) = − log |z| + Constant+ o (1) , z →∞.

We apply Lemma5.3 toU = v − Constant,� = t , � = −, � = J . We obtain

‖P(x) exp

{
v (x)− c −

(
t − + 2

p
+max

{
0,�
})

gJ (x)

}
x�‖Lp[0,Lat t−2]

�C‖ (P exp(v − c)) (x) x
�‖Lp(J )�C1‖ (PW) (x) x�‖Lp(J ),

by (5.23). Then we obtain (5.19) provided

v (x)− c −
(
t − + 2

p
+max

{
0,�
})

gJ (x) � −Q− C on
[
0, Lat t

−2] .
SinceQ is bounded on

[
0, Lat t

−2], we can establish the right-hand side withoutQ. Now
for any [a, b], g[a,b] is positive and decreasing on(−∞, a]. Moreover,v is increasing on
(−∞, Lat t

−2]. Therefore it suffices to show that

v (0)− c� − C; (5.24)

and (
t − + 2

p
+max

{
0,�
})

gJ (0) �C. (5.25)

To prove (5.24), we observe that asQ(0) = 0, (4.1) gives

v (0)− c = V 
 (4 (0))− V 
 (0)

=
∫ a

0
log

∣∣∣∣ s

s − 4 (0)

∣∣∣∣ d
 (s) .

Since fors� |4 (0)|,

log

∣∣∣∣ s

s − 4 (0)

∣∣∣∣ ∼ −|4 (0)|
s
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and sincea ∼ a2 ∼ at , we can use the estimate for
′ = � in (4.9) to obtain

v (0)− c � C


∫ |4(0)|
0 log

∣∣∣∣ s

s + |4 (0)|
∣∣∣∣ √

sa
ds − ∫ 1

2a

|4(0)|
|4 (0)|

s

√
sa

ds

− ∫ a
1
2a

|4 (0)|
s

√
a

ds√
a − s



� C
√
a


√|4 (0)| ∫ 10 log

∣∣∣∣ y

y + 1

∣∣∣∣ dy√
y

−√|4 (0)| ∫∞1 dy

y3/2
− |4 (0)|√

a

 � − C,

since|4 (0)| ∼ at t
−2; a ∼ a2 ∼ at ; and ∼ t . So we have (5.24). Also

gJ (0)= log

∣∣∣∣−a + Lat t
−2

a − Lat t−2
+ 2

a − Lat t−2
√
Lat t−2a

∣∣∣∣
= log

∣∣∣−1+O
(
t−1
)∣∣∣ = O

(
t−1
)
,

so from (5.20),(
t − + 2

p
+max

{
0,�
})

gJ (0) �C (tT (at ))
1/3 t−1 = o (1) ,

recall (3.7). �

Proof of Theorem 5.2(a).This follows directly from Lemmas 5.4 and 5.5.�

Proof of Theorem 5.2(b) for��0. Let P ∈ Pt . We derive this from Theorem 4.2(b) in
[8, p. 96], applied toW ∗ andP ∗, defined by

P ∗ (y) = P
(
y2
)
|y|2�+1/p ∈ P2t+2�+ 1

p
.

SinceP ∗,W ∗ are even, Theorem 4.2(b) there gives, for�1 > 0,

‖P ∗W ∗‖
Lp

(
a∗2t+2�+1/p(1+�1),

√
d
)

�C2 exp(−C3H
∗(�1, t)

3/2)‖P ∗W ∗‖Lp(�
∗
2t+2�+1/p),

where

H ∗ (�1, t)=min

{
�1, T

∗ (a∗2t+2�+1/p)−1}/�∗2t+2�+1/p

∼min
{
�1, T (at )

−1}/�t ,

in view of (2.6), (2.9) and (3.6). On making the substitutionx = y2 in the norms and using
(5.4), we obtain

‖ (PW) (x) x�‖Lp(at+�+1/(2p)(1+�1)2,d)

�C3 exp(−C4H(�1, t)
3/2)‖ (PW) (x) x�‖Lp(I).



228 E. Levin, D. Lubinsky / Journal of Approximation Theory 134 (2005) 199–256

Now, given� > 0, let us determine�1 by

at (1+ �) = at+�+1/(2p)(1+ �1)
2.

Then by (3.9),

(1+ �1)
2

1+ �
= at

at+�+1/(2p)

= 1+O

(
1

tT (at )

)
= 1+ o

(
�t

)
,

so

2�1− � = o
(
�t

)
,

and hence if�1��t , we have�1 ∼ � and

H (�1, t) ∼ H (�, t) .

Then (5.6) follows. If instead�1 < �t , then bothH (�1, t) andH (�, t) are bounded, and
Theorem 5.2(a) gives the result.
We turn to the proof of (5.7). Letr > 1, and write

art = at (1+ �) ,

so that

� = art

at
− 1∼ 1

T (at )

and hence

H (�, t) ∼ 1

T (at ) �t

�Ctε,

someε > 0, by (3.8). Then (5.7) follows from (5.6).�

Proof of Theorem 5.2(b) for� < 0. This follows from the decreasing property ofx� in
(0, d):

‖ (PW) (x) x�‖Lp(at (1+�),d)�Ca
�
t ‖PW‖Lp(at (1+�),d)

�Ca
�
t exp(−C3H(�, t)3/2)‖PW‖Lp(�t )

�C exp(−C3H(�, t)3/2)‖ (PW) (x) x�‖Lp(�t ).

In the second last line, we have used the case� = 0 of Theorem 5.2(b). �

6. Christoffel functions

Christoffel functions are crucially important in analysis of orthogonal polynomials and
weighted approximation theory [17]. In this section we shall estimate generalized and
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classicalLp Christoffel functions for 0< p�∞. As in the previous section, we denote the
exponentials of potentials with mass� t by Pt , so

Pt =
{
c exp

(∫
log |z− �|d�(�)

)
:

c�0, ��0, � (C) � t, S(�) is compact

}
. (6.1)

OurLp Christoffel functions are defined as follows: for 0< p < ∞,

�t,p(W, z) := inf
P∈Pt

(‖PW‖Lp(I)/P (z)
)p

, z ∈ C. (6.2)

The polynomial analogues of�t,p are forn�1,

�n,p(W, z) := inf
P∈Pn

(‖PW‖Lp(I)/|P(z)|)p , z ∈ C. (6.3)

It is clear that

�n,p(W, z)��n,p(W, z). (6.4)

The�n,p(W, ·) are weighted analogues of theLp Christoffel functions introduced by Nevai
[16]. However, the classical Christoffel function is

�n(W
2, x) := inf

P∈Pn−1

(∫
I

(PW)2
)/

P 2(x) . (6.5)

We see that

�n(W
2, x) = �n−1,2(W, x). (6.6)

In describing our result, we shall need the auxiliary function	t introduced in (1.18).

Theorem 6.1. Let0< p < ∞; � > − 1
p
; L > 0 and letW ∈ L (C2

)
.

(a) Then∃ t0 > 0 such that uniformly fort� t0 andx ∈ Jt = [0, at (1+ L�t )], we have

�t,p(W�, x) ∼ 	t (x)W
p(x)

(
x + at

t2

)�p
. (6.7)

(b) Moreover,there existC, t0 > 0 such that uniformly fort� t0 andx ∈ I ,

�t,p(W�, x)�C	t (x)W
p(x)

(
x + at

t2

)�p
. (6.8)

For the polynomial analogues�n,p of �n,p, we prove:

Theorem 6.2. Let0< p < ∞; � > − 1
p
; L > 0 and letW ∈ L (C2

)
.

(a) Then uniformly forn�1 andx ∈ Jn = [0, an(1+ L�n)], we have

�n,p(W�, x) ∼ 	n(x)W
p(x)

(
x + an

n2

)�p
. (6.9)
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(b) Moreover,there existC > 0 such that uniformly forn�1 andx ∈ I ,

�n,p(W�, x)�C	n(x)W
p(x)

(
x + an

n2

)�p
. (6.10)

Note that Theorem1.3 follows directly from Theorem 6.2, (6.6) and Lemma 4.4. We begin
with a lemma:

Lemma 6.3. Let � ∈ R andL ∈ (0, 1). For n�1, there exist polynomialsRn of degree
�n such that,

Rn (x) ∼
(
x + an

n2

)�
, x ∈ [0, a2n] , (6.11)∣∣R′n (x)

∣∣ � Cx�−1, x ∈
[
Lann

−2, a2n
]
. (6.12)

Proof. Suppose first that|�| < 1
2. Consider the Jacobi weight

w (x) = (1− x)−�
(
1− x2

)−1/2
, x ∈ (−1,1) .

It is known[19, p. 36] that its Christoffel functions satisfy

n−1�−1n (w, x) ∼
(
1− x + n−2

)�
,

uniformly for n�1 andx ∈ (−1,1). Moreover, for any fixedε > 0, in
[
0, 1− εn−2

]
,

n
∣∣�′n (w, x)

∣∣ �C (1− x)−�−1 .

Let k be a positive integer and
[
n
k

]
denote the largest integer� n

k
. We set

Rn (x) = n−1�−1[ n
k

] (w, 1− x

a2n

)
a

�
2n.

It is straightforward to check that (6.11) and (6.12) follow. The degree ofRn is at most
2n/k�n, if k �2. For general�, we choose a positive integer4 such that|�/4| < 1

2 and
form the polynomialRn for �/4, and then raise it to the power4. If k > 24, the resulting
polynomial will have degree at mostn. �

The Proof of the lower bounds for the Christoffel functions in Theorem 6.1(b).Let
us set = − 1

2p . We do this in three steps:
Step1: The case� = 

Recall that we define

W ∗ (x) = exp
(−Q∗ (x)

) = exp
(
−Q

(
x2
))

, x ∈ I ∗ =
(
−√d,

√
d
)

and that thenW ∗ ∈ F (C2
)
. From[8, Theorem 1.13, p. 20], we have for

√
x ∈ [0,√d),

inf
P∈P2t

∫ ∗
I
|PW ∗|p (u) du

|PW ∗|p (√x
) = �2t,p

(
W ∗,

√
x
)
/W ∗p (√x

)
� C	∗2t

(√
x
)
,
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where in
[−a∗2t , a∗2t

]
,

	∗2t (u) =
∣∣u2− a∗24t

∣∣
t

√(∣∣u+ a∗2t
∣∣+ a∗2t�∗2t

) (∣∣u− a∗2t
∣∣+ a∗2t�∗2t

)
and	∗2t is defined to be constant in(−∞,−a∗2t ] and[a∗2t ,∞). We see that in[0, at ],

	∗2t
(√

x
) ∼ a2t − x

t
√
at − x + at�t

∼ 	t (x)
/√

x + at t−2 . (6.13)

In (at , d), we obtain instead	∗2t
(√

x
) ∼ 	t (at ) /

√
at . We make the substitutionu = √

v,
and note that ifP0 (v) ∈ Pt , thenP (u) = P0

(
v2
) ∈ P2t . We deduce that

inf
P0∈Pt

∫
I
|P0W |p (v)

1√
v
dv

|P0W |p (x)
�C	t (x)

/√
x + at t−2

and hence

�t,p (W, x)

/[
W (x)

(
x + at t

−2)]p
�C	t (x) ,

provided
√
x ∈ [0,√d), which is equivalent tox ∈ [0, d).

Step2. The case� > : Assume thatx ∈ [0, d). Note that ifP (v) ∈ Pt , then
P (v)

(
v + at t

−2)�− ∈ Pt+�−. Then

�t,p

(
W�, x

)/[
W (x)

(
x + at t

−2)�]p
� inf

P∈Pt

∫ at
at t−2

(|PW| (v) v�−)p dv(
|PW | (x) (x + at t−2

)�− (
x + at t−2

))p
�C inf

P∈Pt

∫ at
at t−2

(
|PW| (v)

(
v + at t

−2)�−
)p

dv(
|PW | (x) (x + at t−2

)�− (
x + at t−2

))p
�C inf

P∈Pt+�−

∫
I
|PW| (v)p dv(|PW | (x) (x + at t−2

))p ,

by our restricted range inequality Theorem5.2(a). Using the result fromStep 1, we continue
this as

= C�t+�−,p (W, x)

/[
W (x)

(
x + at t

−2)]p
�C	t+�− (x) ∼ 	t (x) ,

by Lemma 4.4.
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Step3. The case� < : We consider two ranges ofx.
RangeA: x ∈ [0, at/4]

Let n = [t ] + 1. We use the polynomialsRn from Lemma6.3 that satisfy

Rn (v) ∼
(
v + at t

−2)�−
, v ∈ [0, a2n].

Then as above

�t,p

(
W�, x

)/[
W (x)

(
x + at t

−2)�]p

�C inf
P∈Pt

∫ a2n
at t−2

(
|PW| (v)

(
v + at t

−2)�−
)p

dv(
|PW | (x) (x + at t−2

)�− (
x + at t−2

))p
�C inf

P∈Pt

∫ a2n
at t−2 |PRnW| (v)p dv(|PRnW | (x) (x + at t−2

))p
�C�t+n,p (W, x)

/[
W (x)

(
x + at t

−2)]p
,

by our restricted range inequalities. Using Step 1 above, we continue this as

�C	t+n (x) ∼ 	t (x) ,

as

x ∈ [0, at/4]⇒ at+n − x ∼ at − x; a2(t+n) − x ∼ a2t − x,

so

	t+n (x) ∼ 	t (x) .

RangeB: x ∈ [at/4, d)
Here as� < ,

�t,p

(
W�, x

)/[
W (x)

(
x + at t

−2)�]p
�C inf

P∈Pt

∫ at
0

(|PW| (v) v�−)p dv(
|PW | (x) (x + at t−2

)�− (
x + at t−2

))p
�C

(
at

x + at t−2

)(�−)p

inf
P∈Pt

∫ at
0 (|PW| (v))p dv(|PW | (x) (x + at t−2

))p
�C�t,p(W, x)

/[
W (x)

(
x + at t

−2)]p
�C	t (x) . �
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The proof of the upper bounds for the Christoffel functions implicit in
Theorem 6.2(a). Let us set = − 1

2p . We do this in three steps:
Step1. The case� = : Let

W# (x) = W ∗ (x)1/2 = exp
(−1

2Q
∗ (x)

)
, x ∈ I ∗ =

(
−√d,

√
d
)
.

ThenW# ∈ F (C2
)
. Let L > 0. Denote bya#n,	

#
2n and so on, the analogues ofan,	n

for W#. From [8, Theorem 9.3(c), p. 257] and [8, (9.18), p. 256] we have for
√
x ∈

[0, a#n
(
1+ L�#n

)],
inf

P∈Pn

∫
I∗
∣∣PW#

∣∣2p (u) du∣∣PW#
∣∣2p (√x

) = �n,2p

(
W#,

√
x
)/(

W# (√x
))2p

� C	#
n

(√
x
)
�C

a#n

n

∣∣∣∣∣∣1−
(√

x

a#2n

)2
∣∣∣∣∣∣√√√√∣∣∣∣∣1−

(√
x

a#n

)2
∣∣∣∣∣+ �#n

.

Let P ∈ Pn denote a minimizing polynomial, achieving the inf in the left-hand side
(a compactness argument shows that it exists). Sincea#n = a∗2n =

√
an and�#n ∼ �∗2n ∼

�∗n ∼ �n, we can reformulate the above as

∫
I∗
∣∣P 2W ∗∣∣p (u) du∣∣P 2W ∗∣∣p (√x

) �C

√
an

n

∣∣∣∣1− x

a2n

∣∣∣∣√∣∣∣∣1− x

an

∣∣∣∣+ �n

.

Now let us define a polynomialSn of degree�n by

Sn

(
u2
)
= P (u)2+ P (−u)2 .

ThenSn is a non-negative polynomial with

Sn (x) �P 2 (√x
)
.

AsW ∗ is even, we deduce that forx ∈ [0, an
(
1+ L�n

)],
∫
I∗
∣∣Sn

(
u2
)
W ∗ (u)

∣∣p du∣∣Sn (x)W ∗ (√x
)∣∣p �C

√
an

n

∣∣∣∣1− x

a2n

∣∣∣∣√∣∣∣∣1− x

an

∣∣∣∣+ �n

.

A substitutionu = √
v gives

�n,p(W, x)

/(
W (x)

(
x + an

n2

))p
�

∫
I∗ |(SnW) (v)|p 1√

v
dv

(SnW)p (x)
(
x + an

n2

)−1/2 �C	n (x) ,

providedx ∈ [0, an
(
1+ L�n

)].
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Step2. The case� > : We consider two ranges ofx.
RangeA: x ∈ [0, an/4]

We use the polynomialsR[n/2] from Lemma6.3 of degree�n/2 that satisfy

R[n/2] (v) ∼
(
v + ann

−2)−�
, v ∈ [0, a2[n/2]] ⊇ [0, an−1].

Then as above, our restricted range inequality Theorem 5.2(a) gives

�n,p

(
W�, x

)/[
W (x)

(
x + ann

−2)�]p

�C inf
P∈Pn

∫ an−1
an/n2

(
|PW| (v)

(
v + ann

−2)�−
)p

dv(
|PW | (x) (x + ann−2

)�− (
x + ann−2

))p
�C inf

P∈Pn

∫ an−1
an/n2

∣∣PW/R[n/2]
∣∣ (v)p dv(∣∣PW/R[n/2]

∣∣ (x) (x + ann−2
))p

�C inf
P1∈P[n/2]

∫
I
|P1W| (v)p dv(|P1W | (x) (x + ann−2

))p
= C�[n/2],p(W, x)

/(
W (x)

(
x + ann

−2))p
�C	[n/2] (x) ∼ 	n (x) ,

by the result of Step 1 above, and as

x ∈ [0, an/4]⇒ a[n/2] − x ∼ an − x ∼ a2n − x,

so	[n/2] (x) ∼ 	n (x).

RangeB.
x ∈ [an/4, an

(
1+ L�n

)]: We use our restricted range inequalities and� >  to
deduce that

�n,p

(
W�, x

)/[
W (x)

(
x + ann

−2)�]p

�C inf
P∈Pn

∫ an
an/n2

(
|PW| (v)

(
v + ann

−2)�−
)p

dv(
|PW | (x) (x + ann−2

)�− (
x + ann−2

))p
�C

(
a

�−
n(

x + ann−2
)�−

)p

inf
P∈Pn

∫ an
an/n2

|PW| (v)p dv(|PW | (x) (x + ann−2
))p

�C inf
P∈Pn

∫ an
an/n2

|PW| (v)p dv(|PW | (x) (x + ann−2
))p �C	n (x) ,

by the results of Step 1.
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Step3. The case� < : We let 4 be a fixed integer>  − �. We use the fact that if
P1 ∈ Pn−4, thenP (u) = P1 (u) (u+ ann

−2)4 ∈ Pn. Then

�n,p

(
W�, x

)/[
W (x)

(
x + ann

−2)�]p
�C inf

P∈Pn

∫ an
an/n2

∣∣PW�
∣∣ (v)p dv(

|PW | (x) (x + ann−2
)�)p

�C inf
P1∈Pn−4

∫ an
an/n2

(∣∣P1W�
∣∣ (v) (v + ann

−2)4)p dv(
|P1W | (x) (x + ann−2

)�+4
)p

�C inf
P1∈Pn−4

∫ an
an/n2

∣∣P1W�+4

∣∣ (v)p dv(
|P1W | (x) (x + ann−2

)�+4
)p

�C�n−4

(
W�+4, x

)/(
W (x)

(
x + ann

−2)�+4
)p

�C	n−4 (x) ∼ 	n (x) ,

by the results of Step 2, since4+ � > , and by Lemma4.4. �

Proof of the rest of Theorems 6.1 and 6.2.If we combine the lower bounds for�t,p and
the upper bounds for�n,p, we obtain, for the relevant range ofx,

C1	t (x) � �t,p(W�, x)

/(
W (x)

(
x + at t

−2)�)p
� �[t ],p

(
W�, x

)/(
W (x)

(
x + at t

−2)�)p
� C2	[t ] (x) ∼ 	t (x) .

With n = [t ], this then gives the∼ relations in both Theorems 6.1(a) and 6.2(a). The lower
bounds in Theorem 6.2(b) follow immediately from those in Theorem 6.1(b). Finally we
note that Theorem 6.1 gives Theorem 6.2 only forn�n0 and some thresholdn0. For the
remaining finitely many integers, (6.9) follows as both sides of (6.9) are positive continuous
functions. The same is true of (6.10) except that sinceI is not compact we also need to use
restricted range inequalities.�

7. Zeros of orthogonal polynomials

Thenth orthonormal polynomialpn,�(x) has zeros {xjn,�}nj=1, where
0< xnn,� < xn−1,n,� < · · · < x2n,� < x1n,� < d.

In our estimation ofpn,�(x), we shall need bounds on the zeros and on the spacing between
the zeros. In this section, we establish these, thereby also obtaining Theorem1.4.
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We begin by showing that all the zeros ofpn(W
2
� , x) lie in �n+�+ 1

4
, as a simple conse-

quence of our restricted range inequality Theorem5.1.

Theorem 7.1. LetW := e−Q whereQ : I → [0,∞) is such thatQ∗ (x) = Q
(
x2
)
is

convex inI ∗. Assume moreover,thatQ(d−) = ∞ andQ(x) > 0 = Q(0), x ∈ I\{0}. Let
� > −1

2. Then forn�1,

x1n,� < an+�+ 1
4
. (7.1)

It is interesting that for� = 0 and for weights on the whole real line,an+ 1
4
has to be

replaced byan+ 1
2
[8]. The reason for the better estimate here comes from the slightly

different restricted range inequalities we obtain for subintervals of(0,∞).We note that it is
possible to prove a generalisation of Theorem 7.1 forLp extremal polynomials, as in [8].
There are a number of simple monotonicity and interlacing properties for the zeros of

the orthogonal polynomials:

Theorem 7.2. Let W be a continuous function onI such thatW2 has all finite power
moments. Let� > −1

2 and let4 be a positive integer.
(a) For eachn�j �1, xjn,� is a non-decreasing function of�.
(b)

x1n,��x1n,�+4�x1,n+4,�.

(c) For n�24, pn,4+� has at leastn − 24 sign changes in
{
xnn,�, xn−1,n,�, . . . , x1n,�

}
.

Moreover,for eachj ∈ {24+ 1,24+ 3, . . . , n},
xjn,�+4�xj−24,n,��xj−24,n,�+4. (7.2)

Remark. By a sign change in
{
xkn,�, xk−1,n,�

}
, we mean thatpn,4+�

(
xkn,�

)
andpn,4+�(

xk−1,n,�
)
haveopposite sign, so thatpn,4+� hasanoddnumber of zeros in

(
xkn,�, xk−1,n,�

)
.

We note that in the special case of Laguerre weightsx�e−x , themonotonicity of the zeros
in � is classical[23, pp. 122–123]. On the more quantitative side, we prove:

Theorem 7.3. LetW ∈ L (C2
)
and� > −1

2.
(a) Uniformly forn�1,

xnn,� ∼ ann
−2. (7.3)

(b) For n large enough,

1− x1n,�

an
�C�n.

If in addition,W ∈ L (C2+), we can replace� by∼.
(c) For someC > 0,

xj−1,n,� − xjn,��C	n(xjn), 2�j �n. (7.4)
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We begin with

The Proof of Theorem7.1. We use the well known formula

x1n,� = max
P∈Pn−1

∫
I
x(PW�)

2(x) dx∫
I
(PW�)2(x) dx

. (7.5)

This is an easy consequence of the Gauss quadrature formula forW2
� , see for example[23,

p. 187]. In turn this implies that forr > 0,

1− x1n,�

ar
= min

P∈Pn−1

∫
I

(
1− x

ar

)
(PW�)

2(x) dx∫
I
(PW�)2(x) dx

. (7.6)

Now we proceed as in the proof of Theorem 11.1 in[8, p. 315]. Lett = n+ �+ 1
4, p = 2,

andr = t . We note first that forP ∈ Pn−1\{0}∣∣∣∣1− x

at

∣∣∣∣1/2 |P(x)| ∈ Pn− 1
2
= Pt−�− 3

2p
.

Then Theorem5.1 with the above choices oft, p and with� = � gives∫
I\�t

∣∣∣∣1− x

at

∣∣∣∣ (PW�)
2(x)dx <

∫
�t

∣∣∣∣1− x

at

∣∣∣∣ (PW�)
2(x) dx.

Since 1− x
at

> 0 in the right-hand integral except whenx = at , we deduce that∫
I

(
1− x

at

)
(PW�)

2(x) dx > 0.

Then (7.6) gives

1− x1n

at
> 0

⇒ x1n < at = an+�+ 1
4
. �

Proof of Theorem 7.2. (a) If w1 andw2 are positive continuous weights on a compact
interval [a, b] andw2/w1 is a strictly increasing function in[a, b], then a classical result
[23, Theorem 6.12.2, p. 116] asserts that

xjn (w1) < xjn (w2) ,

wherexjn (wk) denotes thej th zero ofpn (wk). In our situation, if > �, W/W� is a
strictly increasing function inI . However, the classical result cannot be applied directly to
W andW�, sinceI is not compact. (However Szegö applies the result to Laguerre weights
without further explanation.) We can replaceI by Iε =

[
ε, inf

{
d − ε, 1

ε

}]
, whereε > 0 is

small, and apply the result to the weightsW� andW restricted toIε. If we fix n, and let
ε → 0+, and use continuity inε, of the orthogonal polynomial of degreen with respect to
the weightW2

� restricted toIε, we then obtain the result.
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(b) By (a),

x1n,��x1n,�+4.

Moreover, the extremal formula (7.5) gives

x1n,�+4 = max
deg(P )�n−1

∫
I
xP 2 (x) x24W2

� (x) dx∫
I
P 2 (x) x24W2

� (x) dx

� max
deg(P )�n+4−1

∫
I
xP 2 (x)W2

� (x) dx∫
I
P 2 (x)W2

� (x) dx
= x1,n+4,�.

(c) LetP be a polynomial of degree�n− 24− 1. By the Gauss quadrature formula,
n∑

j=1
�n

(
W2

� , xjn,�

)
x24jn,�pn,�+4

(
xjn,�

)
P
(
xjn,�

)
=
∫
I

x24pn,�+4 (x) P (x)W2
� (x) dx

=
∫
I

pn,�+4 (x) P (x)W2
�+4 (x) dx = 0.

This discrete orthogonality condition implies thatpn,�+4 has at leastn − 24 sign changes
in
{
xnn,�, xn−1,n,�, . . . , x1n,�

}
. Suppose not, so that there arem�n−24−1 sign changes.

Let S be a polynomial of degreem with zeros at those sign changes. Note that all zeros of
S are zeros ofpn,�+4 and (if necessary multiplyingS by−1)(

pn,�+4S
) (

xjn,�
)
�0, 1�j �n.

By the above orthogonality condition, and the fact that all zeros ofS are zeros ofpn,�+4,

n∑
j=1

�n

(
W2

� , xjn,�

)
x24jn,�pn,�+4

(
xjn,�

)
S
(
xjn,�

) = 0

⇒ pn,�+4

(
xjn,�

) = 0, 1�j �n.

Thenpn,�+4 is a constant multiple ofpn,�, so for allP of deg�n− 1,∫
I

pn,�+4 (x) P (x)W2
� (x) dx = 0=

∫
I

pn,�+4 (x) P (x) x24W2
� (x) dx.

Then it follows (because of orthogonality and as n > 24 − 1) that for allP of degree
�n+ 24− 1,∫

I

pn,�+4 (x) P (x)W2
� (x) dx = 0,

which forcespn,�+4 to be the zero polynomial, a contradiction.
Finally, we must prove (7.2). Suppose that for somej ,

xjn,�+4 > xj−24,n,�.
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Thenpn,�+4 has at mostn− j zeros in[xnn,�, xj−24,n,�], and so at mostn− j sign changes
in
{
xnn,�, xn−1,n,�, . . . , xj−24,n,�

}
. By our first assertion, it must then have at leastj − 24

sign changes in
{
xj−24,n,�, xj−24−1,n,�, . . . , x1,n,�

}
, which is impossible as the latter set

has onlyj − 24 elements. So

xjn,�+4�xj−24,n,�.

The right-hand inequality in (7.2) follows from (a).�

Next we record the desired inequalities for the zeros ofpn,−1/4, which follow from results
in [8].

Lemma 7.4. LetW ∈ L (C2
)
and = −1

4.
(a) For someC > 0 andn large enough

1− x1n,

an
�C�n. (7.7)

If alsoW ∈ L (C2+), then we have∼ in (7.7).
(b) For someC > 0,

xj,n, − xj+1,n,�C	n(xjn), 1�j �n− 1. (7.8)

(c) Fix m�0.For n large enough,

xn−m,n,�Cann
−2. (7.9)

Proof. (a) Assume thatW ∈ L (C2+). Recall from (1.7) that

pn

(
W2

 , t
2
)
= p2n

(
W ∗2, t

)
so

xjn, =
(
x∗j,2n

)2
. (7.10)

By Theorem 1.19(f) in[8, p. 23], which is applicable asW∈ L (C2+)⇒ W ∗ ∈ F (C2+),
1− x∗1,2n

a∗2n
∼ �∗2n,

so

1− x1n,

an
= 1−

(
x∗1,2n
a∗2n

)2

∼ �∗2n ∼ �n.

If we only know thatW ∈ L (C2
)
, we can apply instead Theorem 11.3 in[8, p. 314] to

obtain (7.7).
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(b) By (7.10), and Theorem 11.4 in [8, p. 315],

xjn, − xj+1,n, =
(
x∗j,2n + x∗j+1,2n

) (
x∗j,2n − x∗j+1,2n

)
� Cx∗j,2n	∗2n

(
x∗j,2n

)
∼ 	n

(
xjn,

)
,

by (6.13).
(c) Note that asW ∗ is even, the spacing in [8, Theorem 11.4, p. 315] gives

2x∗n,2n = x∗n,2n − x∗n+1,2n�C	∗2n
(
x∗n,2n

)
∼ a∗2n

n

∣∣∣∣1− x∗n,2n
a∗2n

∣∣∣∣√∣∣∣∣1− x∗n,2n
a∗n

∣∣∣∣+ �∗2n

∼
√
an

n
,

whence

xnn, =
(
x∗n,2n

)2 �C
an

n2
.

Similarly, the spacing in (b) gives

xn−1,n, � xnn, + C	n

(
xnn,

)
� C

an

n2
+ C

√
xnn,an

n
�C

an

n2
.

Continuing thism times gives (7.9). �

Proof of Theorem 7.3(a), (b). (a) By the classical extremal property for smallest zeros,
and our restricted range inequality Theorem 5.2(a),

xnn,� = inf
deg(P )�n−1

∫
I
xP 2 (x)W2

� (x) dx∫
I
P 2 (x)W2

� (x) dx

� an

n2
inf

deg(P )�n−1

∫ an
an/n2

P 2 (x)W2
� (x) dx∫

I
P 2 (x)W2

� (x) dx

� C
an

n2
.

Next, choose a positive integer4 such that4+  > �. By Theorem 7.2(a),

xnn,��xnn,+4

and by Theorem7.2(c),

xnn,+4�xn−24,n,.

Lemma7.4(c) gives

xn−24,n,�C
an

n2
.
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Combining these gives

xnn,��C
an

n2
.

(b) CaseI. � > : Let us assume thatW ∈ L (C2+). Choose a positive integer4 such
that+ 4 > �. By Theorem7.2(a)

x1n,�x1n,��x1n,+4

and by Theorem7.2(b),

x1n,+4�x1,n+4,.

Then

1− x1n,�

an
� 1− x1,n+4,

an

= 1− x1,n+4,

an+4

+ x1,n+4,

an

(
an

an+4

− 1

)
.

Here from (3.9),

an

an+4

− 1= O

(
1

nT (an)

)
= o

(
�n

)
,

while from Lemma7.4(a),

1− x1,n+4,

an+4

∼ �n+4 ∼ �n.

So at least for large enoughn,

1− x1n,�

an
�C�n.

In the other direction, Lemma7.4(a) gives

1− x1n,�

an
�1− x1n,

an
�C�n.

If only W ∈ L (C2
)
, this last relation gives all that is needed.

CaseII. � < : Let us assume thatW ∈ L (C2+). Choose a positive integer4 such that
4+ � > . Here Theorem7.2(a), (b) give

x1n,��x1n,�x1n,4+��x1,n+4,�.

Then from Lemma7.4(a),

C�n�1− x1n,

an
�1− x1,n+4,�

an
.

Much as above this yields, for large enoughn,

1− x1,n+4,�

an+4

�C�n+4.
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Replacingn+ 4 by n gives for large enoughn,

1− x1,n,�

an
�C�n.

In the other direction,

1− x1n,�

an
�1− x1n,

an
�C�n.

If only W ∈ L (C2
)
, the first part of the proof gives all that is needed.�

Ourproof ofTheorem7.3(c) is basedonanextensionof a classical inequality of Erdösand
Turan for sums of successive fundamental polynomials. One such extension was presented
in [9], and reproduced in [8, p. 320ff.]. That requiredQ to be convex, which is not always
true for the weights in this work. So we present another extension, which allows xQ′ (x)
to be increasing, but holds only on subintervals of(0,∞). Yet another extension was given
in [25].
We note that it is possible to give another proof of Theorem 7.3(c) based on the estimates

in Lemma 7.4, and the inequalities in Theorem 7.2. But we feel the following lemma is of
independent interest.

Lemma 7.5. Let

0�a�y1 < y2 < · · · < ym�b

and{4j (x)}mj=1 ⊆ Pm−1 denote the corresponding fundamental polynomials of Lagrange
interpolation,so that

4j (yk) = �j,k,m1�j, k�m.

Letw : (a, b) → (0,∞) and assume thatq := log 1
w
is such thatq ′ exists and such that

xq ′ (x) is non-decreasing in[y1, ym]. Then for1�j �m− 1,

4j (x)w
−1(yj )w(x)+ 4j+1(x)w−1(yj+1)w(x)�1, x ∈ [yj , yj+1]. (7.11)

We first need a zero counting lemma:

Lemma 7.6. Under the hypotheses ofLemma7.5,if P ∈ Pm has only real zeros,all lying
in [s, t] ⊂ (0,∞), ands, t are zeros,then(Pw)′ has at mostm− 1 distinct zeros lying in
[s, t] ∩ (a, b).

Proof. Let

0< s = x1 < x2 < · · · < xk = t

denote the distinct zeros ofP , with multiplicitiesn1, n2, . . . , nk respectively. Since

(Pw)′ = 0⇒ P ′ − q ′P = 0,
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we see that zeros of(Pw)′ occur whereP has a multiple zero or where

g(x) := P ′(x)
P (x)

=
k∑

j=1

nj

x − xj

hasg(x) = q ′(x). Now we count the zeros ofg−q ′. Since we are working on a subinterval
of (0,∞), this is the same as counting the zeros of the functionxg (x)− xq ′ (x). Here

d

dx
(xg (x)) = −

k∑
j=1

xjnj(
x − xj

)2 < 0,

so xg (x) − xq ′ (x) is strictly decreasing in(xj , xj+1) ∩ (a, b), so has at most one zero
there. (There will be exactly one zero if(xj , xj+1) ⊂ (a, b).) Thus(Pw)′ has at most one
zero in(xj , xj+1) ∩ (a, b), 1�j < k, and zeros atxj iff nj �2. Then in[s, t] ∩ (a, b),
(Pw)′ has at most

k − 1+
k∑

j=1
max{0, nj − 1}� − 1+

k∑
j=1

nj �m− 1

distinct zeros. �

We turn to the

Proof of Lemma 7.5. Now thatwehave Lemma7.6, this is identical to that of Lemma11.8
in [8, p. 322], but we include the details for the reader’s convenience. Fixj and let

P(x) := 4j (x)/w(yj )+ 4j+1(x)/w(yj+1).

ThenP ∈ Pm−1 hasm− 2 zeros at{y1, y2, . . . , yj−1, yj+2, . . . , ym} and
(Pw)(yj ) = 1= (Pw)(yj+1).

Its remaining zero must also be real. By Rolle’s theorem,(Pw)′ has a zero in(yk, yk+1) for

k ∈ {1,2, . . . , m− 1}\{j − 1, j + 1}
a total ofm− 3 distinct zeros. From the lemma, it can have at mostm− 2 distinct zeros in
[y1, ym]. We claim that

(Pw)′(yj )�0�(Pw)′(yj+1). (7.12)

Once we have proved this, it follows that(Pw)′ has exactly one zero in(yj , yj+1) at its
local maximum in this interval (otherwise it would have to have�3 distinct zeros in this
interval, giving�m−1 zeros in all, which is impossible: a sketch of the situation will assist
the reader). ThenPw increases from 1 atyj to its maximum and then decreases again to 1
atyj+1, giving (7.11).
We proceed to prove (7.12). Suppose first that 2�j �m − 2 and suppose for example

(Pw)′(yj+1) > 0. Then we see that(Pw)′ must have at least one zero in(yj+1, yj+2)
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(recall that(Pw)(yj+1) = 1;(Pw)(yj+2) = 0, again a sketch will help). Then we already
have countedm− 2 distinct zeros of(Pw)′, so there are no more. But then(Pw)′(yj ) < 0
(for else,(Pw) has at least one local maximum and minimum in[yj , yj+1) so (Pw)′
has 2 zeros there, and this is impossible: consider separately the cases(Pw)′(yj ) = 0 or
> 0). Since(Pw)(yj ) = 1 > 0 = (Pw)(yj−1), (Pw)′ has one more zero in(yj−1, yj )
giving �m − 1 zeros, which is impossible. So in this case we have the right-hand side of
(7.12) and the other half of (7.12) is similar (or can be deduced by considering(Pw)(−x)

withpoints−yj , 1�j �m). Forj = 1orm−1, this argument requiresminormodifications.
�

Finally, we turn to:

Proof of Theorem 7.3(c).Let {4jn}nj=1 denote the fundamental polynomials of Lagrange
interpolation at the zeros{xjn,�}nj=1 of the orthogonal polynomialspn,� (x), so that

4jn(xkn) = �jk, 1�j, k�n.

A classical formula for the weights in the Gauss quadrature formula is

�jn := �n(W
2
� , xjn,�) =

∫
I

42jnW
2
� .

Then applying Lemma7.5 withw = W2,

�jnW
−2(xjn,�)+ �j−1,nW−2(xj−1,n,�)

=
∫
I

(42jnW
−2(xjn,�)+ 42j−1,nW−2(xj−1,n,�))W2

�

�
∫ xj−1,n,�

xjn,�

(42jnW
−2(xjn,�)+ 42j−1,nW−2(xj−1,n,�))W2

�

� 1

2

∫ xj−1,n,�

xjn,�

(4jnW
−1(xjn,�)+ 4j−1,nW−1(xj−1,n,�))2W2

�

� 1

2

∫ xj−1,n,�

xjn,�

x2� dx�C(x
2�+1
j−1,n,� − x

2�+1
jn,� ). (7.13)

(We used the inequalitys2+ t2� 1
2(s + t)2 in the second last line.) The inequality

y2�+1− x2�+1�C0 (y − x)max
{
y2�, x2�

}
, y > x > 0,

whereC0 is independent ofx andy, enables us to reformulate the above as

�jnW
−2(xjn,�)+ �j−1,nW−2(xj−1,n,�)

�C
(
xj−1,n,� − xjn,�

)
max

{
x
2�
j−1,n,�, x

2�
jn,�

}
.
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Using our estimates for Christoffel functions in Theorem1.3, we obtain for someC �=
C(j, n)(

xj−1,n,� − xjn,�
)
max

{
x
2�
j−1,n,�, x

2�
jn,�

}
�C(	n(xjn,�)x

2�
jn,� + 	n(xj−1,n,�)x

2�
j−1,n,�)

�C(	n(xjn,�)+ 	n(xj−1,n,�))max
{
x
2�
j−1,n,�, x

2�
jn,�

}
,

so

xj−1,n,� − xjn,��C(	n(xjn,�)+ 	n(xj−1,n,�)).

But if, for example,	n(xjn,�) < 	n(xj−1,n,�) this gives

xj−1,n,� − xjn,��C	n(xj−1,n,�)

and then Lemma4.3 shows that

	n(xjn,�) ∼ 	n(xj−1,n,�). (7.14)

So the desired inequality follows. The case	n(xjn,�)�	n(xj−1,n,�) is similar. �

8. Bounds on orthogonal polynomials

We prove Theorem1.2, which we restate here:

Theorem 8.1. LetW ∈ L (C2
)
,� > −1

2 and letpn,� (x) be thenth orthonormal polyno-
mial for the weightW2

� . Then uniformly forn�1,

sup
x∈I

|pn,�(x)|W(x)
(
x + an

n2

)� ∣∣∣(x + an

n2

)
(an − x)

∣∣∣1/4 ∼ 1. (8.1)

The proof of Theorem8.1 is similar in spirit—and easier—than its analogue for weights
on two-sided intervals, Theorem 12.1 in [8, p. 326]. The broad outlines of the method were
introduced by Bonan and Clark [1] and extended by Mhaskar [11], and the authors. The
method has also recently been used by Kasuga and Sakai in [6].
We shall first prove the upper bound forx ∈ [εan, an], any 0< ε < 1, and then treat the

rest of the range ofx. Before proceeding to the first step, let us recall some notation: the
zeros ofpn,�(x) = pn(W

2
� , x) are denoted by

0< xnn,� < xn−1,n,� < · · · < x2n,� < x1n,� < d

and�n,� denotes the (positive) leading coefficient ofpn,�(x). Thenth reproducing kernel
function is

Kn,�(x, t) := Kn(W
2
� , x, t) :=

n−1∑
j=0

pj,�(x)pj,�(t). (8.2)
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The Christoffel–Darboux formula provides an alternative representation forKn:

Kn,�(x, t) =
�n−1,�
�n,�

pn,�(x)pn−1,�(t)− pn,�(t)pn−1,�(x)
x − t

. (8.3)

Letting t → x gives

�−1n,�(x) := �−1n (W2
� , x) = Kn,�(x, x)

= �n−1,�
�n,�

[p′n,�(x)pn−1,�(x)− p′n−1,�(x)pn,�(x)] (8.4)

and in particular forx = xjn,� we obtain

�−1n,�(xjn,�) =
�n−1,�
�n,�

p′n,�(xjn,�)pn−1,�(xjn,�). (8.5)

Lemma 8.2. Let� > −1
2 and0< ε < 1.LetW ∈ L (C2

)
. Then uniformly forn�1,

sup
x∈[εan,a2n]

|pn,�(x)|W(x)x�|x (an − x) |1/4�C. (8.6)

Proof. Let  = −1
4. First recall thata

∗2
2n = an and from (1.7),

pn,

(
t2
)
= p2n

(
W ∗2, t

)
.

The bounds for the latter polynomials in[8, Theorem 1.17, p. 22] give fort ∈ I ∗∣∣∣pn,

(
t2
)∣∣∣W (

t2
)
=
∣∣∣p2n

(
W ∗2, t

)
W ∗ (t)

∣∣∣ �C

∣∣∣a∗22n − t2
∣∣∣−1/4 .

Fix an integerj . On replacingn by n+ j and thent2 by x,

∣∣pn+j, (x)
∣∣W (x) |an − x|1/4 �C

∣∣∣∣ an − x

an+j − x

∣∣∣∣1/4 , x ∈ I.

Using (3.9), we see that for large enoughn, this last right-hand side is bounded above by
a constant independent ofn, x for x ∈ [0, an (1− �n

)]
. Our restricted range inequality

Theorem 5.2 gives

sup
x∈I
∣∣pn+j,W

∣∣ (x) |an − x|1/4 �C. (8.7)

Now choose non-negative integersk, 4 such that

k + � > −1
2 and 4− � > 0. (8.8)

Also let

� := 2�− 4+ k + 1
2. (8.9)
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For a fixedx ∈ [εan, a2n], let

S (t) := t4x�. (8.10)

We may write(
pn,�S

)
(x) =

∫
I

Kn+4+1, (x, t)
(
pn,�S

)
(t)W2

 (t) dt

=
∫
I

Kn+4+1, (x, t) pn,� (t)
[
x� − t�

]
t4W2

 (t) dt

+
∫
I

Kn+4+1, (x, t) pn,� (t) t�+4W2
 (t) dt

=: I1+ I2. (8.11)

Estimation of I2. By choice of�, orthogonality, and then Cauchy–Schwarz,

|I2| =
∣∣∣∣∣∣
∫
I

tk
n+4∑

j=n−k

pj, (x) pj, (t)

pn,� (t)W2
� (t) dt

∣∣∣∣∣∣
�

∫
I

tk
n+4∑

j=n−k

pj, (x) pj, (t)

2

W2
� (t) dt


1/2

.

Now we use our restricted range inequality (5.7), and then (8.7) to obtain, forx�a2n,

|I2|W (x) |an − x|1/4

�C

[∫ a2n

0

t2k+2�

|an − t |1/2 dt +O
(
e−nC

)]1/2
�Ca

�+k+1/4
n

[∫ C0

0

s2�+2k

|1− s|1/2 ds +O
(
e−nC

)]1/2
,

providedC0 is so large thata2n/an�C0. Here the integral converges as 2� + 2k > −1.
Sincex ∈ [εan, a2n], we obtain

|I2|W (x) |an − x|1/4 �Cx�+k+1/4. (8.12)

Estimation of I1. By the Christoffel–Darboux identity,

I1 = �n+4,

�n+4+1,

{
pn+4+1, (x) I1,1− pn+4, (x) I1,2

}
,

where

I1,1=
∫
I

pn+4, (t) pn,� (t) t4

(
x� − t�

x − t

)
W2

 (t) dt,

I1,2=
∫
I

pn+4+1, (t) pn,� (t) t4

(
x� − t�

x − t

)
W2

 (t) dt.
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Now our restricted range inequality Theorem5.2(a), applied toW2
� gives form�1,

�m−1,�
�m,�

=
∫
I

xpm,� (x) pm−1,� (x)W2
� (x) dx

� Cam

∫ am

0

∣∣pm,� (x) pm−1,� (x)
∣∣W2

� (x) dx�Cam. (8.13)

Using this, our bound (8.7), (5.7), and Cauchy–Schwarz gives

|I1|W (x) |an − x|1/4

�Can

∫ a2n

0

t24−2�−1

|an − t |1/2
(
x� − t�

x − t

)2

dt +O
(
e−nC

)1/2

.

Let � = x/an. The substitutiont = ans gives for someC1,

|I1|W (x) |an − x|1/4

�Ca
4−�+�−1/4
n

∫ C1

0

s24−2�−1

|1− s|1/2
(

�� − s�

�− s

)2

ds +O
(
e−nC

)1/2

.

We claim that the term
(

��−s�

�−s

)2
is bounded independently ofn, s, x. Indeed as� ∈ [ε, C],

we see that fors ∈ [0, ε/2],(
�� − s�

�− s

)2

�
(

��−1

2

)2

�C1,

and fors ∈ [ε/2, C], the mean value theorem gives for some� betweens and�,(
�� − s�

�− s

)2

=
(
���−1)2 �C1.

So, using our choice of�,

|I1|W (x) |an − x|1/4

�Ca
�+k+1/4
n

(∫ C1

0

s24−2�−1

|1− s|1/2 ds +O
(
e−nC

))
�Ca

�+k+1/4
n ,

since4− � > 0. Asx ∈ [εan, a2n], this leads to the estimate

|I1|W (x) |an − x|1/4 �Cx�+k+1/4.

Finally, combining this last estimate, (8.11) and (8.12), and since

S (x) = x�+4 = x2�+k+1/2,

we obtain,∣∣pn,� (x)W (x)
∣∣ x� |x (an − x)|1/4 �C. �
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The method for the rest of the range involves the function

A#
n,�(x) :=

2

x

∫
I

(pn,�W�)
2(t)Q(x, t) dt, (8.14)

where

Q(x, t) := xQ′(x)− tQ′(t)
x − t

.

The first step involves an identity forp′n,�(xjn,�):

Lemma 8.3.

p′n(xjn,�) =
�n−1,�
�n,�

A#
n,�(xjn,�)pn−1,�(xjn,�). (8.15)

Proof. Let Kn,�(x, t) denote the reproducing kernel for the weightW2
� . Sincep

′
n,� has

degree�n− 1,

xjn,�p
′
n,�(xjn,�)=

∫
I

Kn+1,�(xjn,�, t)tp′n,�(t)W2
� (t) dt

=
∫
I

Kn,�(xjn,�, t)tp
′
n,�(t)W

2
� (t) dt,

sincepn,�
(
xjn,�

) = 0. We integrate this last relation by parts. Using the fact that the
integrand vanishes at 0 (recall that 1+ 2� > 0) andd, as well as orthogonality, we obtain

xjn,�p
′
n,�(xjn,�) =

∫
I

pn,�(t)Kn,�(xjn,�, t)2tQ
′(t)W2

� (t) dt.

Next, the Christoffel–Darboux formula gives

xjn,�p
′
n,�(xjn,�)=

�n−1,�
�n,�

pn−1,�
(
xjn,�

)
×
[
2
∫
I

p2
n,� (t)

t − xjn,�
tQ′ (t)W2

� (t) dt

]
. (8.16)

Then orthogonality gives

p′n,�(xjn,�)=
�n−1,�
�n,�

pn−1,�
(
xjn,�

) 2

xjn,�

×
∫
I

p2
n,� (t)

[
tQ′ (t)− xjn,�Q

′ (xjn,�)
t − xjn,�

]
W2

� (t) dt

= �n−1,�
�n,�

A#
n,�(xjn,�)pn−1,�(xjn,�). �
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The next step is to use this identity to boundpn(x) in terms ofA#
n and�n:

Lemma 8.4. For 1�j �n,

|pn,�(x)|� |x − xjn,�|
[
�n,�(x)

−1A#
n,�(xjn,�)

]1/2
. (8.17)

Proof. Applying the Cauchy–Schwartz inequality toKn,�(x, xjn,�) gives

|Kn,�(x, xjn,�)|��−1/2n,� (x)�−1/2n,� (xjn,�)

while (8.5) and Lemma 8.3 give

�−1n,�(xjn,�) =
[

�n−1,�
�n,�

pn−1,�(xjn,�)
]2

A#
n,�(xjn,�).

Applying this identity and the last inequality to the Christoffel–Darboux formula (8.3) in
the form

pn,�(x) = Kn,�(x, xjn,�)(x − xjn,�)

/[
�n−1,�
�n,�

pn−1,�(xjn,�)
]

gives the result. �

For a given x, we can choosexjn,� to be the closest zero ofpn,� to x on the left or right,
and use our bounds forx− xjn,� from Theorem7.3 together with our bounds for�n,� from
Theorem 1.3 to obtain a bound involvingA#

n,�(xjn,�). ChooseM > 1 such that for large
enoughn,

xnn,� >
an

Mn2
. (8.18)

(This is possible by Theorem7.3.) We fixε ∈ (0, 1
2

)
and set

Jn :=
[ an

Mn2
, εan

]
. (8.19)

In the sequel, we also need the notation

�n(x) := (pn,�W)2(x)
(
x + an

n2

)2� ∣∣∣(x + an

n2

)
(an − x)

∣∣∣1/2 (8.20)

and

�n(x) := A#
n,�(x)	n(x)|x(an − x)|1/2. (8.21)

The next step is to bound�n in terms of�n.

Lemma 8.5. Letx ∈ Jn = [ an
Mn2

, εan] andxjn,� denote the closest zero on the left or right
to x, restricted to lie inJn. Then for someC1 �= C1(n, ε, x),

�n(x)�C1�n(xjn,�). (8.22)
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Proof. From Theorem7.3(c),

|x − xjn|�C	n(xkn), (8.23)

wherek is eitherj + 1 or j. As in (7.14), Lemma 4.3 gives

	n(xkn,�) ∼ 	n(xjn,�) ∼ 	n(x).

Next, from Theorem1.3,

�n,�(x)W
−2(x)

(
x + an

n2

)−2� ∼ 	n(x) ∼ 	n(xjn,�).

Combining this, (8.17) and (8.23) gives

�n(x)�CA#
n(xjn,�)	n(xjn,�)|x(x − an)|1/2.

It remains to show that

|x − an| ∼ |xjn,� − an| and x ∼ xjn,�.

This is easily established:
an − x

an − xjn,�
= 1+ xjn,� − x

an − xjn,�
�1+ xj−1,n,� − xj+1,n,�

an − xjn,�

� 1+ C	n(xjn,�)

an − xjn,�
�1+ C

	n(xjn,�)

an

� 1+ C

√
xjn,� + ann−2a2n

n
√
anan

�1+ C

n
�C

by Theorem7.3(c) and (1.18). Similarly we derive a lower bound. The proof thatx ∼ xjn,�
is similar. �

Now we prove:

Lemma 8.6. Let� > 0.There existε ∈ (0, 1
2

)
, C(ε), andn0 such that forn�n0,

‖�n‖L∞(Jn)�C(ε)+ �‖�n‖L∞(I ). (8.24)

Proof. We split

A#
n,� (x) = 2

x

[∫ an

2Mn2

0
+
∫ εan

an

2Mn2

+
∫ an

εan

+
∫ d

an

]
(pn,�W�)

2(t)Q(x, t) dt

=: I1+ I2+ I3+ I4.

Note that asx ∈ Jn =
[

an
Mn2

, εan

]
, andε < 1

2, (1.18) shows

	n(x)|x(an − x)|1/2 ∼ anx

n
. (8.25)
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We shall fix�1 > 0 (to be chosen small enough later, depending on�). We can chooseε so
small that

2εan�a�1n, (8.26)

in view of (3.3). InI1 ast�x/2,

Q(x, t)� xQ′(x)
x/2

= 2Q′(x)�C
�1n√
xa�1n

,

in view of (8.26) and (3.11). HereC1 is independent ofn, x, �1 (as are the constants below).
Then

I1 � C
�1n

x3/2
√
a�1n

‖�n‖L∞(I )

∫ an

2Mn2

0

1√(
t + an

n2

)
(an − t)

 t

t + an

n2


2�

dt

� C
�1n

x3/2
√
a�1n

‖�n‖L∞(I )

1

n

∫ 1
2M

0

1√
s + 1

(
s

s + 1

)2�

ds,

by the substitutiont = an
n2

s. Using (8.25), we continue this as

I1	n(x)|x(an − x)|1/2 � C
�1√
xa�1n

an

n
‖�n‖L∞(I )

� C�1

√
an

a�1n
‖�n‖L∞(I ),

sincex� an
Mn2

. Using (3.3), we continue this as

I1	n(x)|x(an − x)|1/2�C�
1− 1

2�
1 ‖�n‖L∞(I ). (8.27)

Next,

I2 � 2

x
‖�n‖L∞(I )

∫ εan

an

2Mn2

Q(x, t)√
t (an − t)

 t

t + an

n2


2�

dt

� C

x
‖�n‖L∞(I )

∫ a�1n

0

Q(x, t)√
t
(
a�1n − t

) dt sup
t∈[0,a�1n]

√
a�1n − t

an − t

� C‖�n‖L∞(I )��1n (x)
1√

x
(
a�1n − x

)√a�1n

an

� C‖�n‖L∞(I )

1

	�1n (x)

√
x
(
a�1n − x

)√a�1n

an
,
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by (4.8) and (4.10). Herex�εan ⇒ x� 1
2a�1n. Using (8.25) on	�1n (x) and	n (x), we

deduce that

I2	n(x)|x(x − an)|1/2 � C‖�n‖L∞(I )

�1n
a�1nx

√
a�1n

an

anx

n

� C‖�n‖L∞(I )�1

√
an

a�1n
�C‖�n‖L∞(I )�

1− 1
2�

1 ,

by (3.3) again. ThusI2 admits the same estimate asI1 (in (8.27)). Since 2� > 1 andC is
independent ofx ∈ Jn andn and�1, we may choose�1 so small that for alln andx ∈ Jn,

(I1+ I2)	n(x)|x(an − x)|1/2��‖�n‖L∞(I ). (8.28)

Next, by the bounds onpn that we already have forx�εan,

I3 � C

x

∫ an

εan

Q(x, t)√
t (an − t)

dt

� C
�n (x)√

x (an − x)
� C

	n(x)
√
x (an − x)

,

by (4.8) and (4.10), so

I3	n(x)
√
x (an − x)�C. (8.29)

Finally,

I4 � 2

x

∫ d

an

tQ′ (t)
t − x

(
pn,�W�

)2
(t) dt

� 2

x (an − x)

∫ d

an

tQ′ (t)
(
pn,�W�

)2
(t) dt.

Here an integration by parts, and orthonormality, give∫
I

tQ′ (t)
(
pn,�W�

)2
(t) dt = n+ �+ 1

2
.

Then

I4	n(x)
√
x (an − x)� C

xan
n
anx

n
= C.

Combining the above estimates gives

�n (x) = A#
n,� (x)	n(x)

√
x (an − x)

� C + �‖�n‖L∞(I ),

uniformly for n large enough andx ∈ Jn. �

We need one final lemma, which extends Theorem5.2(a) in allowing arbitrary powers of(
x + at

t2

)
.
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Lemma 8.7. Let� ∈ R, letA, � > 0 and0< p�∞. There existsC > 0 andt0 > 0 such
that for t� t0 andP ∈ Pt ,∥∥∥(PW) (x)

(
x + at

t2

)�∥∥∥
Lp(I)

�C1

∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[Aat t−2,a2t (1−��2t )]

. (8.30)

Proof. For ��0, this follows easily from Theorem5.2(a). So we assume� < 0. Let
n = [t ]. By Lemma 6.3, there existsRn ∈ Pn such that forx ∈ [0, a2n],

Rn (x) ∼
(
x + an

n2

)� ∼
(
x + at

t2

)�
. (8.31)

Then for someC independent ofn, P ,∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[0,a2n]

� C‖PRnW
∥∥
Lp[0,a2n]

� C‖PRnW‖Lp[Aa2t t−2,a2t (1−��2t )],
by Theorem5.2(a) applied toPRn. We continue this as

�C1

∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[Aa2t t−2,a2t (1−��2t )]

.

(Note thata2t
(
1− ��2t

)
�a2n for n large enough, by (3.9).) Finally as� < 0,∥∥∥(PW) (x)

(
x + at

t2

)�∥∥∥
Lp[a2n,d)

�
(
a2n + at

t2

)� ‖PW‖Lp[a2n,d)

�C
(
a2n + at

t2

)� ‖PW‖Lp[Aa2t t−2,a2t (1−��2t )]

�C

∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[Aa2t t−2,a2t (1−��2t )]

.

In the second last line we used Theorem 5.2(a). Finally we can replacea2t by at in the term
Aa2t t

−2 in the interval. �

Proof of Theorem 8.1. Let 0< � < 1. By the results of Lemmas 8.5 and 8.6 we have for
someε > 0 andC1 independent ofn, ε, �,

sup
x∈[an/Mn2,εan]

|�n(x)| � C1 sup
x∈[an/Mn2,εan]

�n (x)

� C1
(
C (ε)+ �‖�n‖L∞(I )

)
.

Lemma 8.2 gives

sup
x∈[εan,a2n]

|�n(x)|�C2.

Next, our restricted range inequality Lemma8.7with� = 2�gives for someC3 independent
of n, ε, �

‖�n‖L∞(I ) � C3‖�n‖L∞[an/(Mn2),a2n]
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� C3max
{
C2, C1C (ε)+ C1�‖�n‖L∞(I )

}
.

SinceC1 andC3 are independent of�, we may choose� = (C3C1)
−1 /2, to obtain

‖�n‖L∞(I )�C4.

The corresponding lower bound follows easily from the orthonormality relation

1=
∫
I

pn,�W
2
� . �
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